
Slide 1 

Energy and Uncertainty: 
Navigating the Jungle of Stochastic Optimization 

 
CompSust 2012 

 
July 4, 2012 

 

Warren B. Powell 
PENSA Laboratory 
Princeton University 

http://www.castlelab.princeton.edu  

© 2012 Warren B. Powell 



The PENSA team 

q  Undergraduate interns (2012) 
»  Tarun Sinha (MAE) 
»  Stephen Wang (ORFE) 
»  Henry Chai (ORFE) 
»  Ryan Peng (ORFE) 
»  Christine Feng (ORFE) 
»  Joe Yan (ORFE) 
»  Austin Wang (ORFE) 

q  Staff/post-docs 
»  Hugo Simao (deputy director) 
»  Boris Defourny 
»  Arta Jamshidi 
»  Ricardo Collado 
»  Somayeh Moazeni 
»  Javad Khazaei 

q  Graduate students 
»  Warren Scott (ORFE) 
»  Ethan Fang (ORFE) 
»  DH Lee (COS) 
»  Daniel Salas (CBE) 
»  Jinzhen Jin (CEE) 
»  Dan Jiang (ORFE) 
»  Jae Ho Kim (EE) 

q  Faculty 
»  Warren Powell (Director) 
»  Ronnie Sircar (ORFE) 
»  Craig Arnold (MAE) 
»  Rob Socolow (MAE) 
»  … (growing list) 

© 2012 Warren B. Powell 



Intermittent energy sources 
              Wind speed                 

              Solar energy                 

© 2012 Warren B. Powell 



Modeling wind forecast errors 
q  We need a mathematical model of the stochastic process 

describing errors in wind forecast 
»  We are using the “WRF” model to predict wind.  WRF is a 

sophisticated meteorological model that can predict shifts in 
weather patterns. 

»  We need to separate amplitude errors (how much wind at a point in 
time) from temporal errors (errors in the timing of a weather shift). 
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Modeling wind forecast errors 
q  We “fit” a forecast by optimizing temporal shifts 

»  Nonlinear cost function penalizes amplitude and penalty shifts 
»  Additional penalty for changes in shifts 
»  Optimized “fit” obtained by solving a dynamic program.  State 

variable = (shift of previous point, change in two previous shifts) 
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Actual 

WRF forecast 

“fitted” forecast 
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Secondary 
mesh (120V) 
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Substation 

Transformers 

Primary feeders 
(27kV) 
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Electricity spot prices 
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Average price ∼ $50/megawatt-hour  
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Uncertainty in the model 

What is the relationship 
between policies that affect 
the use of fertilizer…  

.... and the eutrophication of 
lakes?  
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Uncertainty in the model 

q Which curve is the right one? 

Tax on fertilizer 
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Uncertainty in the model 

q Estimating the curve 

Tax on fertilizer 
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Observation and measurement 
noise  

⎫
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⎪
⎬
⎪
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Commodity prices 

q The price of natural gas 
»  Reflects global and local economies, competing global 

commodities (primarily oil), policies (e.g. toward 
CO2), and technology (e.g. fracking). 
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Energy resource modeling 

q Need to plan long term energy investments… 

2015                 2020                 2025                  2030                  2035 

Tax policy Batteries 

Solar panels Carbon capture and 
sequestration 

Price of oil 

Climate change 
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Deterministic optimization models 

q We can solve deterministic models using linear 
programming: 
»  For static problems 

 
»  For time-staged problems 

min cx

0
Ax b
x
=

≥

1 1

0

t t t t t

t t t

t

A x B x b
D x u
x

− −− =

≤
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0
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T

t t
t
c x

=
∑

This is the mathematical 
foundation of energy 
policy models such as 
PIES, NEMS, Markal, 
META*Net, … 
 
But how to handle 
uncertainty? 
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Linear programming with uncertainty 

q Mixing optimization and uncertainty 

Time Energy 
sources 

? 

? 
? 

? 

? 
1 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 3
“large optimization model (e.g. NEMS, MARKAL, …)” 
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Linear programming with uncertainty 

q Mixing optimization and uncertainty 

Time Energy 
sources 

6.2 

12.334 
No 

Solar 

142 
Scenario 1 
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Linear programming with uncertainty 

q Mixing optimization and uncertainty 

Time Energy 
sources 

3.6 

18.917 
No 

Wind 

89.1 
Scenario 2 
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Linear programming with uncertainty 

q Mixing optimization and uncertainty 

Time Energy 
sources 

5.9 

22.314 
Yes 

Solar 

117 
Scenario 3 
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5.9 

22.314 
Yes 

Solar 

117 

3.6 

18.917 
No 

Wind 

89.1 

Linear programming with uncertainty 

6.2 

12.334 
No 

Solar 

142 
Scenario 1 

Scenario 2 

Scenario 3 

Now we have to combine the results of these three optimizations to make decisions. 
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Modeling dynamic problems 

q Before we can solve these problems, we have to 
know how to think about them. 

q The biggest challenge when making decisions 
under uncertainty is modeling.   

Min E {Σ cx} 
Ax = b 
x > 0 

Mathematician 

Software 

Organize class 
libraries, and set up 
communications and  

databases 
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Modeling dynamic problems 

q The system state: 
( ), , System state, where:

       Resource state (physical state)
                 Energy investments, energy storage, ...
                 Status of generators
       Information state
       

t t t t

t

t

S R I K
R

I

= =

=

=

          State of the technology (costs, performance)
                 Climate, weather (temperature, rainfall, wind)
                 Market prices (oil, coal)
      Knowledge state ("belief state")tK =

                 Belief about the effect of CO2 on the environment
                 Belief about the effect of fertilizer on algal blooms

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭ The state variable is the minimally dimensioned function of history 

that allows us to calculate the decision function, cost function and 
transition function.  
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Modeling dynamic problems 

q Decisions: 
Computer science
     Discrete action
Control theory
     Low-dimensional continuous vector
Operations research
     Usually a discrete or continuous but high-dimensional
             vector of dec

t

t

t

a

u

x

=

=

=

isions.

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

( ) Decision function (or "policy") mapping a state to an
           an action , control  or decision .
I prefer to write ( ) as the function that returns an action ,
where  is the set of all p

s
a u x
A s aπ

π

π

=

∈Π olicies (or functions).  Use
( ) if using decision  or ( ) for control .X s x U s uπ π
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Modeling dynamic problems 

q Exogenous information: 

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

( )ˆ ˆ ˆ ˆNew information = , , ,

ˆ    Exogenous changes in capacity, reserves
            New gas/oil discoveries, breakthroughs in technology

ˆ    New demands for energy from each source
      

t t t t t

t

t

W R D E p

R

D

=

=

=

      Demand for energy
ˆ     Changes in energy from wind and solar
ˆ    Changes in prices of commodities, electricity, technology
t

t

E
p
=

=
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Modeling dynamic problems 

q The transition function 

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

1 1

1 1

1 1

1 1

( , , )

            Water in the reservoir
ˆ                       Spot prices

ˆ                 Energy from wind

M
t t t t

t t t t

t t t
Wind Wind Wind
t t t

S S S x W

R R Ax R
p p p
e e e

+ +

+ +

+ +

+ +

=

= + +

= +

= +

)

Also known as the: 
 “System model” 
 “State transition model” 
 “Plant model” 
 “Model” 



Stochastic optimization models 
q The objective function 

Given a system model (transition function) 

»  We have to find the best policy, which is a function that 
maps states to feasible actions, using only the 
information available when the decision is made. 

( )min , ( )t
t t

t
E C S X Sπ π

π γ
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑

Decision function (policy) State variable 
Cost function 

Finding the best policy 

Expectation over all 
random outcomes 

( )1 1, , ( )M
t t t tS S S x W ω+ +=
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Stochastic programming 

Markov decision processes 

Simulation optimization 

Stochastic search 

Reinforcement learning 

Optimal control 

Policy search 

learningQ −

Model predictive control 

On-policy learning Off-policy learning 
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Four classes of policies 

1) Myopic policies 
»  Take the action that maximizes contribution (or minimizes 

cost) for just the current time period: 

»  We can parameterize myopic policies with bonus and 
penalties to encourage good long-term behavior. 

»  We may use a myopic cost function approximation: 

The cost function approximation                     may be 
designed to produce better long-run behaviors. 

( ) argmax ( , )
t

M
t x t tX S C S x=

( | ) argmax ( , | )
t

M
t x t tX S C S xπθ θ=

( , | )t tC S xπ θ
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Four classes of policies 

2) Lookahead policies  
     Plan over the next T periods, but implement only the 

action it tells you to do now: 
»  Deterministic forecast (most common) 

 
»  Probabilistic lookahead 
»  Rolling/receding horizon procedures 
»  Model predictive control 
»  Rollout heuristics 
»  Tree search (decision trees) 

' '
' 1

( ) argmax ( , ) ( , )
T

LA
t t t t t

t t
X S C S x C S x

= +

= + ∑
1, ,...,t t t Tx x x+ +
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Four classes of policies 

q A lookahead policy 
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Four classes of policies 

q Probabilistic lookahead 
»  This formulation is popular in water resource planning 

© 2012 Warren B. Powell 

Mon  Tue  Wed  Thur  Fri        Sat
  

0.3 

0.4  

0.3 

Low 
demand 

High 
demand 



Four classes of policies 

q Probabilistic lookahead 
»  This formulation is popular in water resource planning 
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Lookahead policies 

q Lookahead policies peek into the future 
»  Optimize over point forecast of the future 

The real process 
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Four classes of policies 

q Probabilistic lookahead 

The real process 
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Four classes of policies 

q Probabilistic lookahead 
»  Optimize over stochastic model of the future. 
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Four classes of policies 

q Probabilistic lookahead 
»  Optimize over stochastic model of the future. 
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Four classes of policies 

q Probabilistic lookahead 
»  Optimize over stochastic model of the future. 



Four classes of policies 

3) Policy function approximations 
»  Lookup table 

•  Recharge the battery between 2am and 6am each morning, and 
discharge as needed. 

»  Parameterized functions 
•  Recharge the battery when the price is below              and 

discharge when the price is above  
»  Regression models 

 
 

»  Neural networks 

( )20 1 2( | )PFA
t t tX S S Sθ θ θ θ= + +

tS tx
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chargeρ
dischargeρ



Four classes of policies 

4) Policies based on value function approximations 
»  Using the pre-decision state 

»  Or the post-decision state: 

»  This is what most people associate with “approximate dynamic 
programming” 

( )1 1( ) argmax ( , ) ( )
t

VFA
t x t t t tX S C S x EV Sγ + += +

( )( )1( ) argmax ( , ) ( , )
t

VFA x
t x t t t t t tX S C S x V S S xγ += +
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Four classes of policies 
q  There are three classes of 

approximation strategies 

»  Lookup table 
•  Given a discrete state, return a 

discrete action or value 

»  Parametric models 
•  Linear models (“basis functions”) 
•  Nonlinear models 
•  Neural networks 

»  Nonparametric models 
•  Kernel regression 
•  Neural networks 
•  Piecewise linear approximations 
•  Splines, …. 
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Approximate dynamic programming 
q  Second edition 

»  300+ new pages 
»  Four fundamental classes of 

policies 
»  New chapter dedicated to policy 

search (uses optimal learning) 
»  3-chapter sequence for value 

function approximations. 
»  Chapter 5 (on modeling) and 

chapter 6 (on policies) available 
at: 

    http://adp.princeton.edu/ 
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Lecture outline 

  q  Optimizing energy storage using a policy function 
approximation 
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Electricity spot prices 
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Average price ∼ $50/megawatt-hour  
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Policy optimization 

q Optimizing a policy for battery arbitrage 
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q  Challenge: find a policy for charging and discharging the 
battery 
»  Strategy posed by the battery manufacturer: “Buy low, sell high” 

0,00 

20,00 

40,00 

60,00 

80,00 

100,00 

120,00 

140,00 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 

  P
ric

e 
  

Buy 

Sell 

Buy 

Sell 

Buy 

Sell 

Buy 

Sell 

Buy 

Sell 

Optimizing storage 



Decision making under uncertainty 

Don’t gamble; take all your 
savings and buy some good stock 
and hold it till it goes up, then 
sell it.  If it don’t go up, don’t 
buy it. 
 
                                                                               
Will Rogers 

It is not enough to model the variability of a process.  You have to 
model the uncertainty – the flow of information. 
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q We had to design a simple, implementable policy that 
did not cheat! 

q We have developed a separate line of research in 
optimal learning to determine  

Withdrawρ
Storeρ

 and .Store Withdrawρ ρ

Optimizing storage 
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Optimizing storage 

q Finding the best policy (“policy search”) 
»  Let                                    be the “policy” that chooses the 

actions. 
»  We wish to maximize the function 

 

WithdrawρStoreρ

( )
0

min ( , ) , ( | )
T

t
t t

t
F W C S X Sπ

ρ ρ γ ρ
=

= ∑E E

( | , )store withdraw
tX Sπ ρ ρ
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Optimal learning 

q  Now assume we have five choices, with uncertainty in our 
belief about how well each one will perform.   

q  If you can make one measurement, which would you measure? 

1 2 3 4 5 

Possible values of ( , )store withdrawx ρ ρ=



Optimal learning 

q Policy search process: 
»  Choose  
»  Simulate the policy to get a noisy estimate of its value: 

 

WithdrawρStoreρ

( )
0

     ( , ( )) ( ), ( ( ) | )     
T

t
t t

t
F W C S X Sπρ ω γ ω ω ρ

=

=∑

 and store withdrawρ ρ
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( , ( ))F Wρ ω
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Optimal learning 

q  At first, we believe that 

q  But we measure alternative x and observe 

q  Our beliefs change: 

q  Thus, our beliefs about the rewards are gradually improved 
over measurements 

( )0 0~ ,1x x xNµ θ β

( )

1 0

0 0 1
1

0

1 1~ ,1

W
x x

W
x x x

x W
x

x x x

y

N

β β β

β θ β
θ

β β

µ θ β

= +

+
=

+

( )1 ( , ( )) ~ ,1 W
x xy F W Nρ ω µ β=

i j 
0
xθ

i j 
1
xW

i j 

0
xθ

1
xθ
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Optimal learning 

1 2 3 4 5 

No improvement 

q  Now assume we have five choices, with uncertainty in our 
belief about how well each one will perform.   

q  If you can make one measurement, which would you measure? 
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Optimal learning 

1 2 3 4 5 

New solution 

The value of learning is that it may change your decision. 

q  Now assume we have five choices, with uncertainty in our 
belief about how well each one will perform.   

q  If you can make one measurement, which would you measure? 
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Optimal learning 

q  An important problem class involves correlated beliefs – 
measuring one alternative tells us something other alternatives. 

1 2 3 4 5 

...these beliefs change too. 
measure 
here... 



Optimal learning with a physical state 
q  The knowledge gradient 

»  The knowledge gradient is the expected value of a single 
measurement x, given by 

 

»  Knowledge gradient policy chooses the measurement with the 
highest marginal value. 

{ }, 1max ( , ( )) max ( , )KG n n n n
x y yE F y K x F y Kν += −

Knowledge state 
Implementation decision 

Updated knowledge state given measurement x 
Expectation over different measurement outcomes 

Marginal value of measuring x (the knowledge gradient) 

Optimization problem given what we know 
New optimization problem 
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The knowledge gradient 

q  Computing the knowledge gradient for Gaussian beliefs 
»  The change in variance can be found to be 

»  Next compute the normalized influence: 

»  Let 

»  Knowledge gradient is computed using   

2, 1

2, 2, 1

|n n n n
x x x

n n
x x

Var Kσ θ θ

σ σ

+

+

⎡ ⎤= −⎣ ⎦

= −

%

' 'maxn n
n x x x x
x n

x

θ θ
ζ

σ
≠−

= −
%

( ) ( ) ( )       ( ) Cumulative standard normal distribution
                                         ( ) Standard normal density
f ζ ζ ζ φ ζ ζ

φ ζ

= Φ + Φ =

=

( )KG n n
x x xfν σ ζ= %

0 

Comparison to other alternatives 



q  After four measurements: 

»  Whenever we measure at a point, the value of another 
measurement at the same point goes down.  The knowledge 
gradient guides us to measuring areas of high uncertainty. 

Optimizing storage 

Measurement 
Value of another measurement 
at same location. 

Estimated value Knowledge gradient 

New optimum 
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Optimizing storage 
q  After five measurements: 

Estimated value Knowledge gradient 

After measurement 
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Optimizing storage 
q  After six samples 

Estimated value Knowledge gradient 
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Optimizing storage 
q  After seven samples 

Estimated value Knowledge gradient 
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Optimizing storage 
q  After eight samples 

Estimated value Knowledge gradient 
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Optimizing storage 
q  After nine samples 

Estimated value Knowledge gradient 
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Optimizing storage 
q  After ten samples 

Estimated value Knowledge gradient 

© 2012 Warren B. Powell 



q  After ten samples, our estimate of the surface: 

Optimizing storage 

Estimated value True value 
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New book! 
q  New book on Optimal 

Learning 
»  Published by John Wiley 
»  First 12 chapters are at an 

advanced undergraduate level. 

q  Synthesizes communities: 
»  Ranking and selection 
»  Bandit (Gittins and UCB) 
»  Stochastic search 
»  Simulation optimization 
»  Global optimization 
»  Special focus on knowledge 

gradient 
http://optimallearning.princeton.edu/ 
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q The value of perfect information 

0 

200000 

400000 

600000 

800000 

1000000 

1200000 

Advance information Admissible policy 

Profit over eight year lifetime 

$389,000 
Cost of 
battery 

Will Rogers policy Optimized, admissible policy 

Optimizing storage 
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q The value of perfect information 

0 

200000 

400000 

600000 

800000 

1000000 

1200000 

Advance information Admissible policy 

Profit over eight year lifetime 

Will Rogers policy A better policy??? 

Optimizing storage 

? Cost of 
battery 
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Lecture outline 

  q  Balancing energy from wind and the grid using a 
value function approximation 
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The test problem 
q  Energy storage with stochastic prices, supplies and demands. 

wind
tE

grid
tP

tD

battery
tR

1 1

1 1

1 1

1

ˆ

ˆ

ˆ

wind wind wind
t t t

grid grid grid
t t t

load load load
t t t

battery battery
t t t

E E E

P P P

D D D

R R Ax

+ +

+ +

+ +

+

= +

= +

= +

= +

1 Exogenous inputstW + =
State variabletS =

Controllable inputstx =
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The test problem 

q Bellman’s optimality equation 

( )1 1( ) min ( , ) ( ( , , )
tt x t t t t t tV S C S x V S S x Wγ∈ + += +X E

wind
t
grid
t
load
t
battery
t

E

P

D

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

wind battery
t
wind load
t
grid battery
t
grid load
t
battery load
t

x

x

x

x

x

−

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

1

1

ˆ

ˆ

ˆ

wind
t

grid
t

load
t

E

P

D

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

© 2012 Warren B. Powell 



The curse of dimensionality 
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q  Finding an optimal solution using exact methods: 
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Approximate value iteration 

Step 1: Start with a pre-decision state  
Step 2: Solve the deterministic optimization using 
            an approximate value function: 
 
            to obtain     .  
Step 3: Update the value function approximation 
 
Step 4: Obtain Monte Carlo sample of               and 
            compute the next pre-decision state: 
 
Step 5: Return to step 1.  

, 1 ,
1 1 1 1 1 1 ˆ( ) (1 ) ( )n x n n x n n

t t n t t n tV S V S vα α−
− − − − − −= − +

( )1 ,ˆ min ( , ) ( (         , )    )n n n M x n
t x t t t t t tv C S x V S S x−= +

n
tx

n
tS

( )ntW ω

1 1( , , ( ))n M n n n
t t t tS S S x W ω+ +=

Simulation 

Deterministic 
optimization 

Recursive 
statistics 
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Approximate policy iteration 

Step 1: Start with a pre-decision state  
 Step 2: Inner loop: Do for m=1,…,M: 

        Step 2a: Solve the deterministic optimization using 
                       an approximate value function: 
 
                      to obtain     .  
        Step 2b: Update the value function approximation 
 
        Step 2c: Obtain Monte Carlo sample of               and 
                      compute the next pre-decision state: 
 
Step 3: Update           using                 and return to step 1.  

1, , 1, 1 ,
1 1 ˆ( ) (1 ) ( )n m x m n m x m m

m mV S V S vα α− − −
− −= − +

( )1 ,        ˆ min ( , ) ( (  , )  )   m m n M x m
xv C S x V S S x−= +

n
tS

1 ( , , ( ))m M m m mS S S x W ω+ =
1, ( )n MV S−

mx

( )mW ω

( )nV S
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Approximating functions 

q Approximation architectures 
»  Lookup tables - one value for 

each input variable. 
 
 

»  Parametric models 
  

 
 

»  Nonparametric models 

»  Exploiting structure (convexity) 

0 1 1 2 2( ) ( ) ( ) ...V s s sθ θ φ θ φ= + + +

1 2 3 4 5 



Approximating the value function 

q Notes on computational experience 
»  Most convergence proofs assume lookup tables 

•  Does not scale!!! 

»  Parametric models are the most attractive 

•  Simple, popular, but dangerous. 
•  Challenge is designing features (the “art” of ADP) 
•  Can work, but can work very poorly.  Use at your own risk!! 

»  Nonparametric models 

•  Flexible, but clumsy inside algorithms, and limited to a few 
dimensions. 
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Experiments with energy storage 

q Algorithmic strategies 
1) Discretized benchmark: 

2) Vanilla ADP using least squares policy iteration 
(Lagoudakis and Parr) 
 
3) LSPI using instrumental variables 
 
4) Direct policy search (described below) 
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An energy storage application 
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Approximate dynamic programming 

q Why didn’t a parametric model work? 
»  Possible theory: We had to use “off policy” state 

sampling to estimate the regression parameters. 

»  Off-policy learning is not a problem if we use lookup 
tables, and probably not a problem with nonparametric 
approximations. 

»  Do we just need better approximation strategies? 

© 2012 Warren B. Powell 

( )V s

( )V s

( )V s

State s State s 



Dirichlet process mixtures 

q  A semi-parametric method that fits linear models around 
clusters (L. Hannah, D. Blei and W.B.P.) 

»  Works well, but clustering step is very slow. 



Semi-parametric methods 

q New idea – Dirichlet clouds 
»  Old method (DP-GLM) – Retain entire history of 

observations for clustering. 
»  New method – Retain parameters of Gaussian clouds. 
»  Fit linear models for each cloud. 
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Semi-parametric methods 

q Videos 

»  Scalar function – curved 

 
»  Scalar function – hockey stick 

 
»  Two-dimensional surface 
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Approximate dynamic programming 

q The challenge of time dependent problems 
»  Real energy storage problems are highly time 

dependent 

»  Makes direct policy search impossible, but easy to do 
with Bellman error minimization, especially if we 
exploit convexity. 
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Approximating dynamic programming 

q What if someone gives us a forecast of supply 
(energy from wind) or demand? 
»  Basic storage problem 

»  What if we are give a forecast of future demands?  

q Strategies for handling a forecast: 
»  Add it to the state variable: 

»  Imbed it in the expectation: 

Amount of energy in storaget tS R= =

, 1 , 2 ,( , ,..., ) Forecast by time periodD D D D
t t t t t t t Tf f f f+ + += =

( ),      Very hard to approximate ( )D
t t t tS R f V S=

( ) ( )    But now we have to recompute ( )

if we change the forecast.

Df
V S V R V R⇒E E
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Lecture outline 

  q  The stochastic unit commitment problem using a 
hybrid lookahead and cost function approximation 
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The time-staging of decisions 

© 2012 Warren B. Powell 

Day ahead planning (steam) 

Hour ahead planning (gas turbine) 

Real-time (optimal power flow) 
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The time-staging of decisions 
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The time-staging of decisions 
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'tt

Day-ahead unit commitment 
Load curtailment notification 
Natural gas generation 
Tapping spinning reserve 



The time-staging of decisions 
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The time-staging of decisions 
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q A deterministic model 
»  Optimize over all decisions at the same time 

»  These decisions need to made with different horizons 
•  Steam generation is made day-ahead 
•  Gas turbines can be planned an hour ahead or less 

The stochastic unit commitment problem 
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q A stochastic model 
»  The decision problem at time t: 

•         is determined at time t, to be implemented at time t’ 
•         is determined at time t’, to be implemented at time t’ 

»  Important to recognize information content 
•  At time t,         is deterministic. 
•  At time t,         is stochastic.      
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The stochastic unit commitment problem 
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q A stochastic model 
»  We capture the information content of decisions 

•         is determined at time t, to be implemented at time t’ 
•         is determined at time t’ by the policy  

»  The policy             is constrained by the solution            
which is influenced by two parameters: 

•  p is the fraction of power allocated for spinning reserve 
•  q is the fraction of the wind that we plan on using. 
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The stochastic unit commitment problem 
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q Matching supply to demand 
»  We have to find the best way to meet demand 

»  …. Now we have to do it in the presence of significant 
levels of wind and solar energy. 

The stochastic unit commitment problem 
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q  The unit commitment problem 
»  Rolling forward with perfect forecast of actual wind, demand, … 

hour 0-24 hour 25-48 hour 49-72 
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⎧
⎪
⎨
⎪
⎩

The stochastic unit commitment problem 
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q  When planning, we have to use a forecast of energy from 
wind, then live with what actually happens. 

hour 0-24 

The stochastic unit commitment problem 

, 't tx
⎧
⎪
⎨
⎪
⎩
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q  The unit commitment problem 
»  Stepping forward observing actual wind, making small adjustments 

hour 0-24 

', 't ty

The stochastic unit commitment problem 
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q  The unit commitment problem 
»  Stepping forward observing actual wind, making small adjustments 

Hours 0-24 

The stochastic unit commitment problem 

Hours 25-48 
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220 kv grid, 40 percent wind 
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The value of wind 

q Research question: What is the relative cost of 
uncertainty vs variability? 

»  Scenario 1: Deterministic wind – Wind is variable, but 
we can forecast it perfectly 

»  Scenario 2: Stochastic wind – We forecast wind, but the 
actual does not match the forecast 

»  Scenario 3: Constant wind – Wind generates energy at a 
constant (and perfectly known) value  
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Perfect forecast – 5 percent wind 
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Perfect forecast – 40 percent wind 
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Perfect forecast – 40 percent wind 
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Imperfect forecast – 40 percent wind 
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Imperfect forecast – 40 percent wind 
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q The effect of modeling uncertainty in wind 

The stochastic unit commitment problem 
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Lecture outline 

q  How do we achieve robust behaviors? 
q  You do not just blindly solve a stochastic 

optimization – you have to understand the 
nature of uncertainty, and identify specific, 
implementable strategies for dealing with 
uncertainty. 
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Working with uncertainty 

q Working with uncertainty is not magic. 
»  You have to identify the types of the uncertainties you 

are working with… 
»  … quantify the risks and rewards, so you know what 

you are trying to achieve…. 
»  …. and then identify the types of strategies that are best 

suited to deal with the uncertainties you are facing. 
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Hedging risk 

q Hedging electricity prices 
»  We can sign a contract to deliver electricity purchased 

on the spot market, exposing us to spikes. 
»  We can protect ourselves by purchasing hedge 

contracts.  This reduces risk, but reduces profits. 

Amount of hedge 
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Hedging risk 
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Hedging risk 
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Hedging risk 

q Hedge 70 MWh 

Time 

C
um

ul
at

iv
e 

pr
of

its
 

© 2012 Warren B. Powell 



Storage 
q  Storage as a hedge against 

variations in 
»  Supply (wind, solar) 
»  Load 
»  Purchase cost of natural gas, 

electricity. 
»  Market price of selling energy  

              Wind speed                 
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Energy storage portfolios 

q  Designing a dynamic storage control policy for portfolios 
of storage devices.  

Wind 
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Meeting variability with portfolios of generation 
with mixtures of dispatchability 
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Commodity prices 

q Dual use power plants 
»  There is tremendous 

uncertainty in the 
relative cost of natural 
gas and oil. 

»  Plants which can burn 
gas and oil provide 
generators with the 
option to switch, 
limiting their exposure 
to price spikes of one 
commodity. 

Ratio of natural gas to oil 

Price of natural gas 
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Substitutable resources 
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Substation 

Transformers 

Primary feeders 
(27kV) 
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Modeling dynamic problems 

Demands Resources 
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Modeling dynamic problems 

t t+1 t+2 
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Modeling dynamic problems 

t t+1 t+2 

Optimizing at a point in time 

Optimizing over time 
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