
Submodular Optimization in
Computational Sustainability

Andreas Krause

Master Class at CompSust 2012

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.:

AAAAAAAA

Combinatorial optimization in
computational sustainability

Many applications in computational sustainability
require solving large discrete optimization problems:

Given finite set V wish to select subset A
(subject to some constraints) maximizing utility F(A)

These problems are the focus of this tutorial.

2

Wind farm Deployment
[Changshui et al, Renewable Energy, 2011]

3

How should we deploy wind farms to maximize efficiency?

2

1

3

Conservation Planning
[w Golovin, Converse, Gardner, Morey – AAAI ‘11 Outstanding Paper+

Which patches of land should we recommend?

5

Can only make a limited
number of measurements!

D
e
p
th

Location across lake

Robotic monitoring of rivers and lakes

[with Singh, Guestrin, Kaiser, Journal of AI Research ’09]

 Need to monitor large spatial phenomena

 Temperature, nutrient distribution, fluorescence, …

NIMS
Kaiser
et.al.

(UCLA)

Actual temperature Predicted temperature
Use robotic sensors to

cover large areas

Where should we sense to get most accurate predictions?

 Contamination of drinking water
could affect millions of people

6

Monitoring water networks
[with Leskovec, Guestrin, VanBriesen, Faloutsos, J Wat Res Mgt ‘08]

 Place sensors to detect contaminations

Where should we place sensors to quickly detect contamination?

Sensors

~$14K

Contamination

7

Quantifying utility of sensor placements

Model predicts impact of contaminations

For each subset A of V compute sensing quality F(A)

S2

S3

S4
S1

S2

S3

S4

S1

High sensing quality F(A) = 0.9 Low sensing quality F(A)=0.01

Model predicts
High impact

Medium impact
location

Low impact
location

Sensor reduces
impact through
early detection!

S1

Contamination

Set V of all
network junctions

8

Sensor placement

 Given: finite set V of locations, sensing quality F

 Want: such that

 NP-hard!

 How well can this simple heuristic do?

S1

S2

S3

S4

S5

S6
Greedy algorithm:

Start with A = {}

For i = 1 to k

s* := argmaxs F(A U {s})

A := A U {s*}

9

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

Number of sensors placed

P
o
p
u
la

ti
o
n
 a

ff
e
c
te

d

Performance of greedy algorithm

Greedy score empirically close to optimal. Why?

Small subset of
Water networks

data

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

Number of sensors placed

P
o
p
u
la

ti
o
n
 a

ff
e
c
te

d

Greedy

Optimal

P
o
p
u
la

ti
o
n
 p

ro
te

ct
e
d

(h
ig

h
e
r

is
 b

e
tt

e
r)

Number of sensors placed

10

Key property 1: Monotonicity

S2

S1

Placement A = {S1, S2}

S2
S3

S4

S1

Placement B = {S1, S2, S3, S4}

F is monotonic:

Adding sensors can only help

11

S2
S3

S4

S1

Key property 2: Diminishing returns

S2

S1

S’

Placement A = {S1, S2} Placement B = {S1, S2, S3, S4}

Adding S’
will help a lot!

Adding S’
doesn’t help much New

sensor S’ New sensor Y’

S’ B A

S’

+

+

Large improvement

Small improvement

Submodularity:

12

One reason submodularity is useful

 Theorem [Nemhauser et al ‘78]

 Suppose F is monotonic and submodular. Then

 greedy algorithm gives constant factor approximation:

Greedy algorithm gives near-optimal solution!

In general, guarantees best possible unless P = NP!

~63%

13

Battle of the Water Sensor Networks Competition
[with Leskovec, Guestrin, VanBriesen, Faloutsos, J Wat Res Mgt 2008]

Real metropolitan area network (12,527 nodes)

Water flow simulator provided by EPA

3.6 million contamination events

Multiple objectives: Detection time, affected population, …

Place sensors that detect well “on average”

Reward function is submodular

Claim:
Reward function is monotonic submodular

Consider event i:

Ri(uk) = benefit from sensor uk in event i
Ri(A) = max Ri(uk), ukA

 Ri is submodular

Overall objective:

F(A) =  Prob(i) Ri(A)

Submodular??

u1

Ri(u1) Event i

u2

Ri(u2)

14

15

Closedness properties

 F1,…,Fm submodular functions on V and 1,…,m ≥ 0

 Then: F(A) = i i Fi(A) is submodular!

 Submodularity closed under nonnegative linear
combinations!

 Extremely useful fact!!

F(A) submodular   P() F(A) submodular!

Multicriterion optimization:
F1,…,Fm submodular, i>0  i i Fi(A) submodular

Reward function is submodular

Claim:
Reward function is monotonic submodular

Consider event i:

Ri(uk) = benefit from sensor uk in event i
Ri(A) = max Ri(uk), ukA

 Ri is submodular

Overall objective:

F(A) =  Prob(i) Ri(A)

 F is submodular!

 Can use greedy algorithm to solve !

u1

Ri(u1) Event i

u2

Ri(u2)

16

17

BWSN Competition results
13 participants

Performance measured in 30 different criteria

0

5

10

15

20

25

30

To
ta

l S
co

re

H
ig

h
er

 is
 b

et
te

r

E

E

D D G

G
G

G
G

H

H

H

G: Genetic algorithm

H: Other heuristic
D: Domain knowledge
E: “Exact” method (MIP)

24% better performance than runner-up! 

18

Simulated all on 2 weeks / 40 processors

152 GB data on disk

 Very accurate computation of F(A)

, 16 GB in main memory (compressed)

L
o
w

e
r

is
 b

e
tt

e
r

30 hours/20 sensors

6 weeks for all
30 settings 

3.6M contaminations

Very slow evaluation of F(A) 

1 2 3 4 5 6 7 8 9 10
0

100

200

300

Number of sensors selected

R
u

n
n

in
g

ti
m

e
(m

in
u

te
s)

Exhaustive search
(All subsets)

Naive
greedy

What was the trick?

19

“Lazy” greedy algorithm [Minoux ’78]

 Lazy greedy algorithm:

 First iteration as usual

 Keep an ordered list of marginal
benefits i from previous iteration

 Re-evaluate i only for top
element

 If i stays on top, use it,
otherwise re-sort

a

b

c

d

Benefit (s | A)

e

a

d

b

c

e

a

c

d

b

e

Note: Very easy to compute online bounds, use in other algo’s, etc.
 [Leskovec, Krause et al. ’07]

20

Simulated all on 2 weeks / 40 processors

152 GB data on disk

 Very accurate computation of F(A)

Using “lazy evaluations”:
1 hour/20 sensors

Done after 2 days! 

, 16 GB in main memory (compressed)

L
o
w

e
r

is
 b

e
tt

e
r

30 hours/20 sensors

6 weeks for all
30 settings 

3.6M contaminations

Very slow evaluation of F(A) 

1 2 3 4 5 6 7 8 9 10
0

100

200

300

Number of sensors selected

R
u

n
n

in
g

ti
m

e
(m

in
u

te
s)

Exhaustive search
(All subsets)

Naive
greedy

Fast greedy

 Submodularity
 to the rescue:

Result of lazy evaluation

2

Example: Windfarm deployment
[Changshui et al, Renewable Energy, 2011]

21

1

3

Contribution of 2
reduced due to wake effects

Total power F(A) is monotonic submodular! 

Wind

Example: Windfarm deployment
[Changshui et al, Renewable Energy, 2011]

22

Greedy LazyGreedy Genetic Algo

Power (kW) 79,585 79,585 78,850

Runtime 2.5 min 10 sec 1.6 hours

Other interesting directions
Many sensing problems involve maximization
of monotonic submodular functions

Can use greedy algorithm to get near-optimal solutions!

Lazy evaluations provide dramatic speedup

How can we handle more complex settings:

Complex constraints / complex cost functions?

Sequential decisions?

23

24

Non-constant cost functions
For each s V, let c(s)>0 be its cost
(e.g., conservation cost, hardware cost, …)

Cost of a set C(A) = sA c(s)

Want to solve

 A* = argmax F(A) s.t. C(A) ≤ B

 Cost-benefit greedy algorithm:
 Start with A := {};

 While there is an s  V\A s.t. C(A U {s}) ≤ B

A := A U {s*}

25

Performance of cost-benefit greedy

 Want

maxA F(A) s.t. C(A) ≤ 1

 Cost-benefit greedy picks a.

 Then cannot afford b!

  Cost-benefit greedy performs arbitrarily badly!

Set A F(A) C(A)

{a} 2 

{b} 1 1

26

Cost-benefit optimization
[Wolsey ‘82, Sviridenko ‘04, Krause et al ‘05+

 Theorem [Krause and Guestrin‘05]
ACB: cost-benefit greedy solution and

AUC: unit-cost greedy solution (i.e., ignore costs)

 Then
 max { F(ACB), F(AUC) } ≥ (1-1/√e) OPT

 Can still compute online bounds and
speed up using lazy evaluations

 Note: Can also get

(1-1/e) approximation in time O(n4) [Sviridenko ’04]

(1-1/e) approximation for multiple linear constraints [Kulik ‘09+

0.38/k approximation for k matroid and m linear constraints
 [Chekuri et al ‘11+

~39%

Application: Conservation Planning
[w Golovin, Converse, Gardner, Morey – AAAI ‘11 Outstanding Paper+

How should we select land for conservation
to protect rare & endangered species?

Case Study: Planned Reserve in Washington State

Mazama pocket gopher streaked horned lark Taylor’s checkerspot

Problem Ingredients

Land parcel details

Geography: Roads, Rivers, etc

Model of Species’ Population Dynamics

Reproduction, Colonization, Predation, Disease, Famine,
Harsh Weather, …

	

	

	
 	

Time t+1

Population Dynamics

Environmental
Conditions
(Markovian)

Our Choices

Protected

Parcels

	

	

	
 	

Time t

Modeled using a
Dynamic Bayesian

Network

...
...

...
...

!
"#
$%
&'
&

!
"#
$%
&(
&

R

ηt ηt+ 1

Z
(i)
2,t

Z
(i)
1,t

Z
(i)
5,t

Z
(i)
5,t+ 1

Z
(i)
2,t+ 1

Z
(i)
1,t+ 1

	

	

	
 	

Time t+1

Population Dynamics

Environmental
Conditions
(Markovian)

Our Choices

Protected

Parcels

	

	

	
 	

Time t

Modeled using a
Dynamic Bayesian

Network

...
...

...
...

!
"#
$%
&'
&

!
"#
$%
&(
&

R

ηt ηt+ 1

Z
(i)
2,t

Z
(i)
1,t

Z
(i)
5,t

Z
(i)
5,t+ 1

Z
(i)
2,t+ 1

Z
(i)
1,t+ 1

Model Parameters

From the ecology literature, or

Elicited from panels of domain experts

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Parcel Size (Acres)

A
n

n
u
a

l
P

a
tc

h
 S

u
rv

iv
a

l
P

ro
b

a
b

ili
ty

●

●

●

●

● ●

A
n

n
u

al
 P

at
ch

 S
u

rv
iv

al
 P

ro
b

ab
ili

ty

Patch Size (Acres)

	

	

	
 	

From Parcels to Patches

So we group parcels into larger patches.

Patch 1 Patch 2

Most parcels are too small
to sustain a gopher family

We assume no colonization between patches,
and model only colonization within patches.

We optimize over (sets of) patches.

The Objective Function

In practice, use sample
average approximation

Choose R to maximize species persistence

...
...

...
...

!
"#
$%
&'
&

!
"#
$%
&(
&

R

ηt ηt+ 1

Z
(i)
2,t

Z
(i)
1,t

Z
(i)
5,t

Z
(i)
5,t+ 1

Z
(i)
2,t+ 1

Z
(i)
1,t+ 1

Selected patches R

	

	

	
 	

 Pr[alive after 50yrs]

0.8

0.7

0.5

f(R)= 2.0
(Expected # alive)

“Static” Conservation Planning
Select a reserve of maximum utility,
subject to budget constraint

 NP-hard

 But f is submodular

  Can find a near-optimal solution!

  Even in “incentive-compatible”
 manner *Singer ‘10+

Solution

a

35

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Budget (km
2
)

E
x
p
e

c
te

d
 n

u
m

b
e

r
o
f

s
u
rv

iv
in

g
 s

p
e

c
ie

s

Optimized

random

by area

Results: “Static” Planning

Can get large gain through optimization

Other interesting directions
Many sensing problems involve maximization
of monotonic submodular functions

Can use greedy algorithm to get near-optimal solutions!

Lazy evaluations provide dramatic speedup

How can we handle more complex settings:

Complex constraints / complex cost functions?

Sequential decisions?

37

Time t+1

	

	

	
 	

Dynamic Conservation Planning

Build up reserve over time

At each time step t, the budget Bt and the set Vt of available
parcels may change

May learn from information we gain after selecting patches

Time t

	

	

	
 	

Benefit of adaptivity

Find near-optimal set A
of sensor locations

Must commit to all actions in
advance (no „observations“)

Want near-optimal policy π
for allocating resources
based on observations

39

Sensors

Sequential decisions

Is there a notion of
submodularity for policies??

„A priori“ decisions

Time t+1

	

	

	
 	

Time t

	

	

	
 	

Problem Statement
 Given:

Items (patches, tests, …) V=,1,…,n-

Associated with random variables X1,…,Xn taking values in O

Objective:

Policy π maps observation xA to next item

 Value of policy π:

 Want

 NP-hard (also hard to approximate!)

40

Patches picked by π
if world in state xV

Adaptive greedy algorithm
Suppose we’ve seen XA = xA.

Conditional expected benefit of adding item s:

Adaptive Greedy algorithm:

 Start with

 For i = 1:k

Pick

Observe

Set

41 When does this adaptive greedy algorithm work??

Benefit if world in state xV

Conditional on
observations xA

Adaptive submodularity
[Golovin & Krause, JAIR 2011]

 Adaptive monotonicity:

 Adaptive submodularity:

Theorem: If f is adaptive submodular and adaptive
monotone w.r.t. to distribution P, then

 F(πgreedy) ≥ (1-1/e) F(πopt)

42

xB observes
more than xA

whenever

Many other results about submodular set functions
can also be “lifted” to the adaptive setting!

Time t+1

	

	

	
 	

Dynamic Conservation Planning

Build up reserve over time

At each time step t, the budget Bt and the set Vt of available
parcels may change

May learn from information we gain after selecting patches

f is adaptive submodular in this setting! 

Time t

	

	

	
 	

Opportunistic Allocation for Dynamic Conservation

 In each time step:

Available parcels

 and budget appear

Opportunistically choose

 near-optimal allocation

 Theorem: We get at least 38.7% of the value of
the best clairvoyant algorithm*

* Even under adversarial selection of available parcels & budgets!

Time t=1 Time t=2

	

	

	
 	

Results

Adaptive optimization outperforms existing approaches

45

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Time

E
x
p

e
c
te

d
 n

u
m

b
e
r

o
f

p
e

rs
is

t.
 s

p
e

c
ie

s

a priori
optimization

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Time

E
x
p

e
c
te

d
 n

u
m

b
e
r

o
f

p
e

rs
is

t.
 s

p
e

c
ie

s

random

a priori
optimization

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Time

E
x
p

e
c
te

d
 n

u
m

b
e
r

o
f

p
e

rs
is

t.
 s

p
e

c
ie

s

adaptive
by area

random

a priori
optimization

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Time

E
x
p

e
c
te

d
 n

u
m

b
e
r

o
f

p
e

rs
is

t.
 s

p
e

c
ie

s

Adaptive
optimization

adaptive
by area

random

a priori
optimization

Decision-Support Tool
[w Bogunovic, Converse]

46 Near real-time, interactive solver, see talk tomorrow!

Related Work

Existing software

Marxan [Ball, Possingham & Watts ‘09+

Zonation [Moilanen and Kujala ‘08]

General purpose software

No population dynamics modeling, no guarantees

Sheldon et al. ‘10

Models non-submodular population dynamics

Only considers static problem

Relies on mixed integer programming

Other applications of Adaptive Submodularity
Stochastic set cover

Active learning

Bayesian experimental design / value of information

Influence maximization in social networks

...

Submodular surrogates?

48

Submodularity in ML / AI

49

Fast inference for
high-order submodular

MAP problems [NIPS ’10]

Submodular dictionary selection for
sparse representation [ICML ’10]

MATLAB Toolbox for optimizing submodular functions (JMLR ’10)

Series of NIPS Workshops on Discrete Optimization in ML
 videos on videolectures.net

Submodular compressive
sensing [AISTATS ’12]

First regret bounds for
GP optimization [NIPS ’11]

C D

J

A

O

H
G

E

K

M

I

F

N

B

L

P

C D

J

A

O

H
G

E

K

M

I

F

N

B

L

P

Conclusions
Many applications in computational sustainabiity
need large-scale discrete optimization under uncertainty

Fortunately, some of those have structure:
submodularity

Submodularity can be exploited to develop efficient,
scalable algorithms with strong guarantees

Can handle complex constraints

Adaptive submodularity allows to address
sequential decision problems

50

Thanks:

http://www.onr.navy.mil/

