

Submodular Optimization in Computational Sustainability

nf Informatik Computer Science

Andreas Krause

Master Class at CompSust 2012

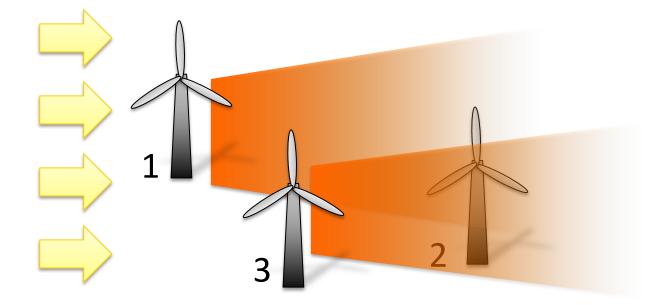
Combinatorial optimization in computational sustainability

- Many applications in computational sustainability require solving large discrete optimization problems:
- Given finite set V wish to select subset A (subject to some constraints) maximizing utility F(A)

$$\max_{A\subseteq V} F(A)$$

• These problems are the focus of this tutorial.

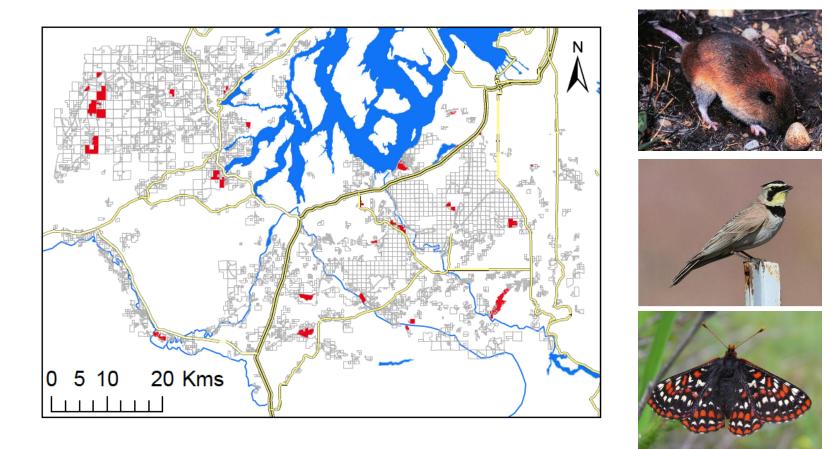
Wind farm Deployment [Changshui et al, Renewable Energy, 2011]



How should we deploy wind farms to maximize efficiency?

Conservation Planning

[w Golovin, Converse, Gardner, Morey – AAAI '11 Outstanding Paper]

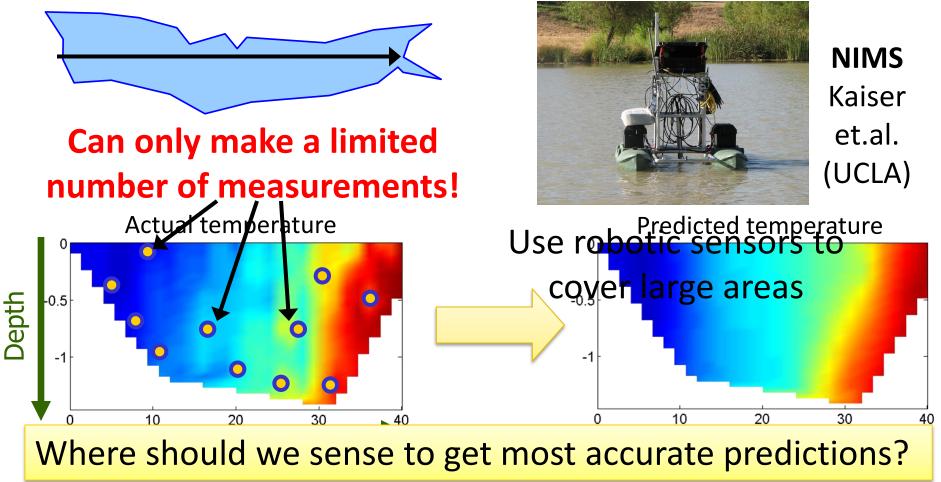


Which patches of land should we recommend?

Robotic monitoring of rivers and lakes [with Singh, Guestrin, Kaiser, Journal of Al Research '09]

Need to monitor large spatial phenomena

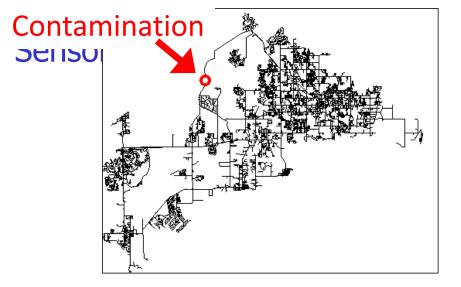
Temperature, nutrient distribution, fluorescence, ...



Monitoring water networks

[with Leskovec, Guestrin, VanBriesen, Faloutsos, J Wat Res Mgt '08]

Contamination of drinking water could affect millions of people

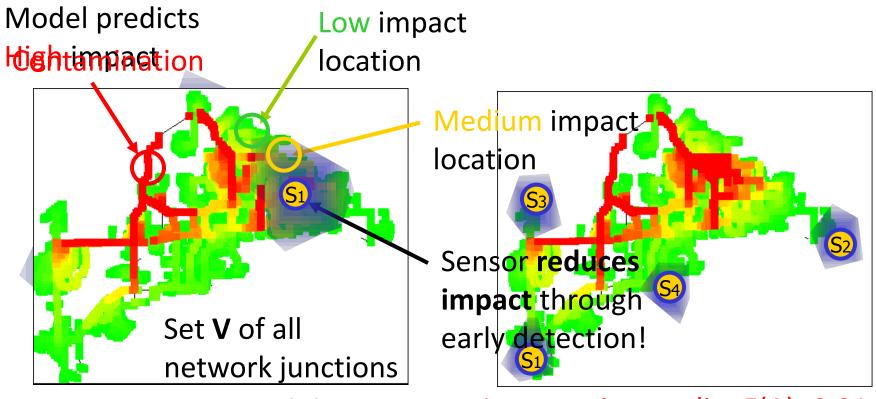


Place sensors to detect contaminations

Where should we place sensors to quickly detect contamination?

Quantifying utility of sensor placements

- Model predicts impact of contaminations
- For each subset A of V compute sensing quality F(A)



High sensing quality F(A) = 0.9

Sensor placement

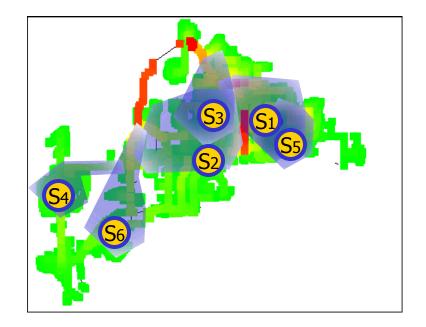
Given: finite set V of locations, sensing quality F

Want: $\mathcal{A}^* \subseteq \mathcal{V}$ such that $\mathcal{A}^* = \operatorname*{argmax}_{|\mathcal{A}| \leq k} F(\mathcal{A})$

NP-hard!

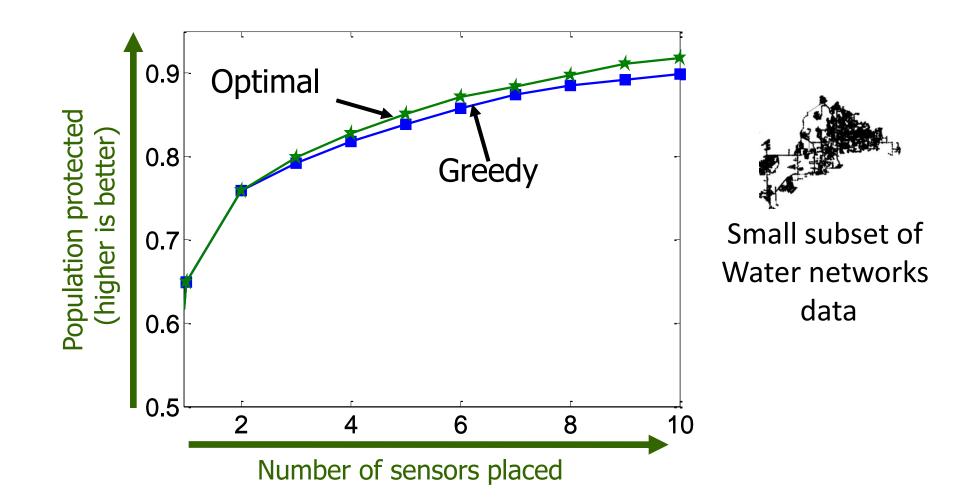
Greedy algorithm:

A := A U {s*}



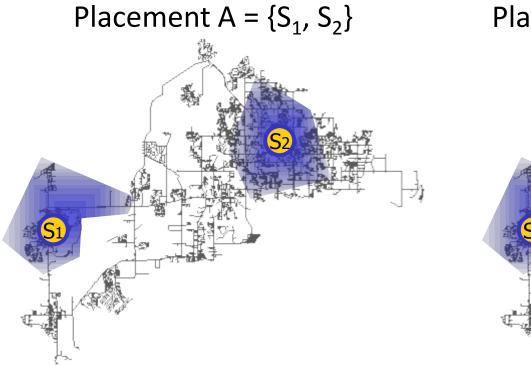
How well can this simple heuristic do?

Performance of greedy algorithm



Greedy score empirically close to optimal. Why?

Key property 1: Monotonicity

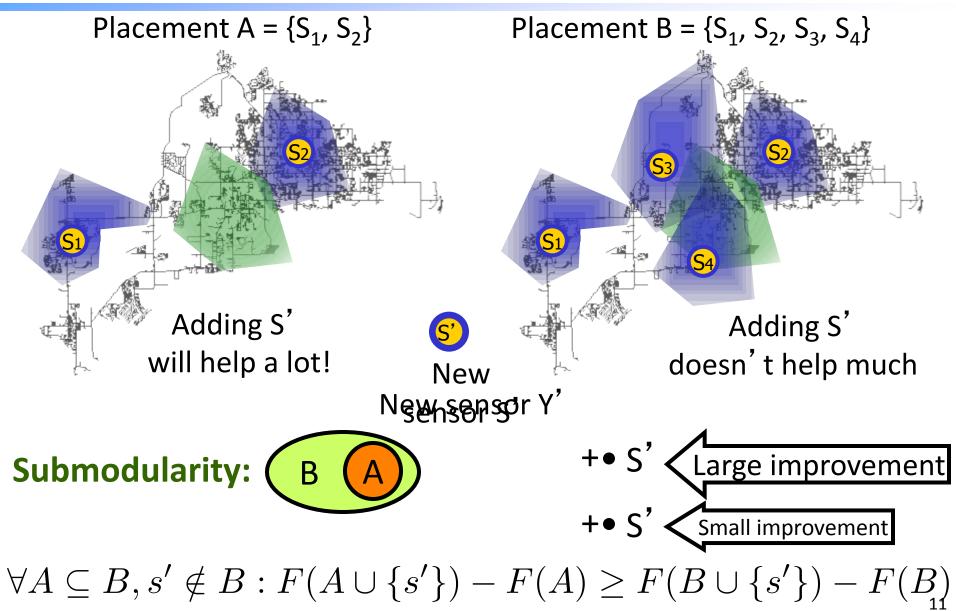


Placement B = { S_1 , S_2 , S_3 , S_4 }

F is monotonic: $\forall A \subseteq B : F(A) \leq F(B)$

Adding sensors can only help

Key property 2: Diminishing returns



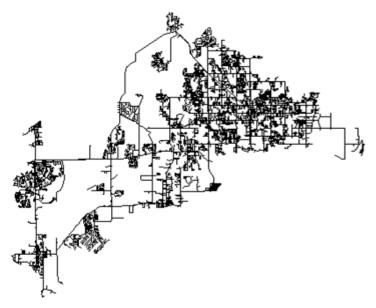
One reason submodularity is useful

Theorem [Nemhauser et al '78] Suppose F is *monotonic* and *submodular*. Then greedy algorithm gives constant factor approximation: $F(A_{greedy}) \ge (1 - 1/e) \max_{|A| \le k} F(A)$

- Greedy algorithm gives near-optimal solution!
- In general, guarantees best possible unless P = NP!

Battle of the Water Sensor Networks Competition [with Leskovec, Guestrin, VanBriesen, Faloutsos, J Wat Res Mgt 2008]

- Real metropolitan area network (12,527 nodes)
- Water flow simulator provided by EPA
- 3.6 million contamination events
- Multiple objectives: Detection time, affected population, ...
- Place sensors that detect well "on average"

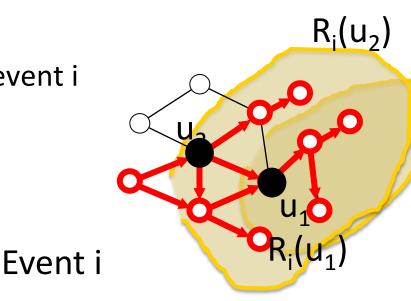


Reward function is submodular

Claim:

Reward function is monotonic submodular

- Consider event i:
 - R_i(u_k) = benefit from sensor u_k in event i
 - $R_i(A) = \max R_i(u_k), u_k \in A$
 - ⇒ R_i is submodular
- Overall objective:
 - $F(A) = \sum Prob(i) R_i(A)$
 - Submodular??



Closedness properties

 $F_1,...,F_m$ submodular functions on V and $\lambda_1,...,\lambda_m \ge 0$ Then: $F(A) = \sum_i \lambda_i F_i(A)$ is submodular!

Submodularity closed under nonnegative linear combinations!

Extremely useful fact!!

- $F_{\theta}(A)$ submodular $\Rightarrow \sum_{\theta} P(\theta) F_{\theta}(A)$ submodular!
- Multicriterion optimization:

 $F_1,...,F_m$ submodular, $\lambda_i > 0 \rightarrow \sum_i \lambda_i F_i(A)$ submodular

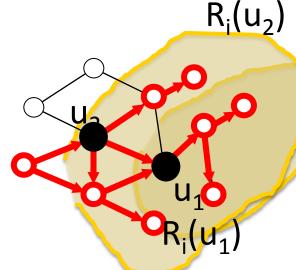
Reward function is submodular

• Claim:

Reward function is monotonic submodular

- Consider event i:
 - $R_i(u_k)$ = benefit from sensor u_k in event i
 - $R_i(A) = \max R_i(u_k), u_k \in A$
 - \Rightarrow R_i is submodular
- Overall objective:
 - $F(A) = \sum Prob(i) R_i(A)$
 - → F is submodular!

 \rightarrow Can use greedy algorithm to solve max F(A)!



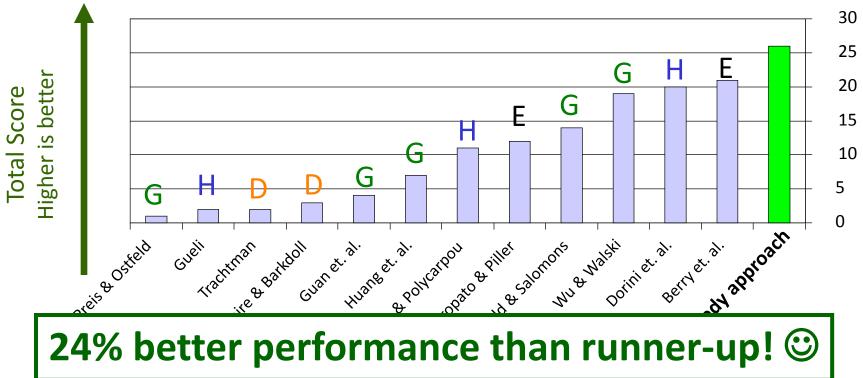
BWSN Competition results

- 13 participants
- Performance measured in 30 different criteria

H: Other heuristic

G: Genetic algorithm D: Domain knowledge

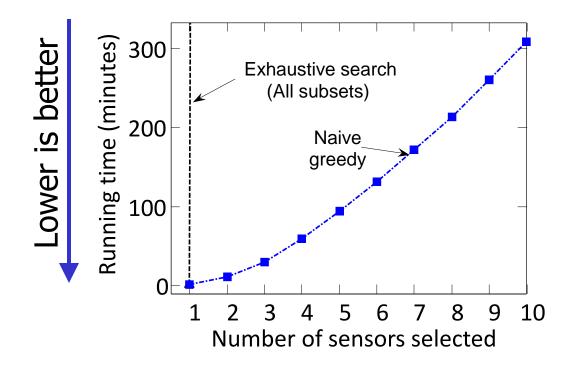
E: "Exact" method (MIP)



What was the trick?

Simulated all **3.6M contaminations** on 2 weeks / 40 processors 152 GB data on disk, 16 GB in main memory (compressed)

→ Very accurate computation of F(A) Very slow evaluation of F(A) \otimes



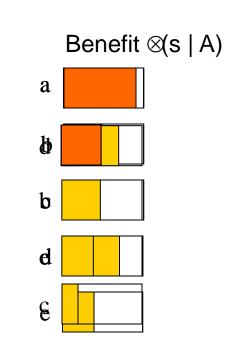
30 hours/20 sensors 6 weeks for all 30 settings 🛞

"Lazy" greedy algorithm [Minoux '78]

$$\Delta(s \mid A) = F(A \cup \{s\}) - F(A)$$

Lazy greedy algorithm:

- First iteration as usual
- Keep an ordered list of marginal benefits ⊗ from previous iteration
- Re-evaluate ⊗ only for top element
- If ⊗ stays on top, use it, otherwise re-sort

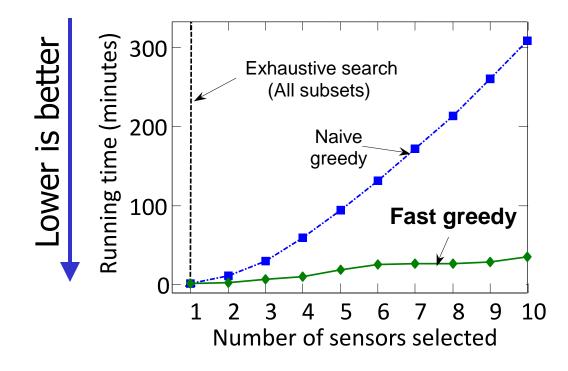


Note: Very easy to compute online bounds, use in other algo's, etc. [Leskovec, Krause et al. '07]

Result of lazy evaluation

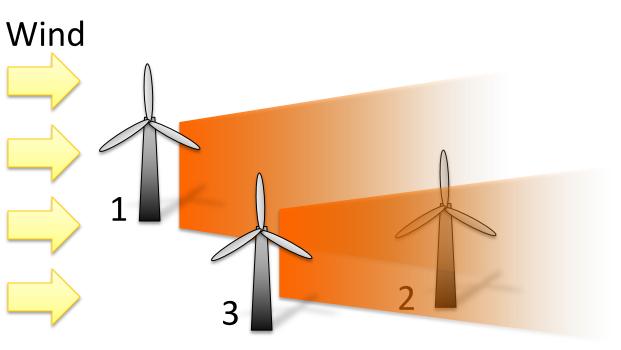
Simulated all **3.6M contaminations** on 2 weeks / 40 processors 152 GB data on disk, 16 GB in main memory (compressed)

 \rightarrow Very accurate computation of F(A) Very slow evaluation of F(A) \otimes



30 hours/20 sensors 6 weeks for all **30** settings 🛞 Submodularity to the rescue: Using "lazy evaluations": 1 hour/20 sensors Done after 2 days! 🙂

Example: Windfarm deployment [Changshui et al, Renewable Energy, 2011]



Contribution of 2 reduced due to wake effects $F(\{1,2\}) - F(\{1\}) \ge F(\{1,2,3\}) - F(\{1,3\})$

Total power F(A) is monotonic submodular! 🙂

Example: Windfarm deployment [Changshui et al, Renewable Energy, 2011]

	Greedy	LazyGreedy	Genetic Algo
Power (kW)	79,585	79,585	78,850
Runtime	2.5 min	10 sec	1.6 hours

Other interesting directions

- Many sensing problems involve maximization of monotonic submodular functions
 - Can use greedy algorithm to get near-optimal solutions!
 - Lazy evaluations provide dramatic speedup
- How can we handle more complex settings:
 - Complex constraints / complex cost functions?
 - Sequential decisions?

Non-constant cost functions

- For each s
 V, let c(s)>0 be its cost
 (e.g., conservation cost, hardware cost, ...)
- Cost of a set C(A) = $\sum_{s \in A} c(s)$
- Want to solve

 $A^* = \operatorname{argmax} F(A) \text{ s.t. } C(A) \leq B$

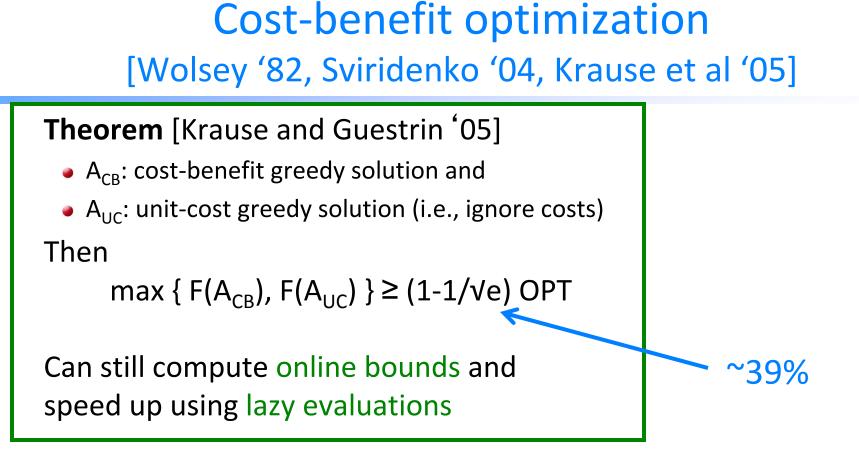
 $\begin{array}{l} \hline \textbf{Cost-benefit greedy algorithm:} \\ \textbf{Start with A := {};} \\ \textbf{While there is an s } \in \textbf{VA s.t. C(A U {s}) \leq B} \\ s^* = \operatorname*{argmax}_{s:C(\mathcal{A} \cup \{s\}) \leq B} \frac{F(\mathcal{A} \cup \{s\}) - F(\mathcal{A})}{c(s)} \\ \textbf{A := A U {s^*}} \end{array}$

Performance of cost-benefit greedy

Want	Set A	F(A)	C(A)
	{ <mark>a</mark> }	2ε	3
$\max_A F(A) \text{ s.t. } C(A) \leq 1$	{b}	1	1

Cost-benefit greedy picks a. Then cannot afford b!

Cost-benefit greedy performs arbitrarily badly!



Note: Can also get

- (1-1/e) approximation in time O(n⁴) [Sviridenko '04]
- (1-1/e) approximation for multiple linear constraints [Kulik '09]
- 0.38/k approximation for k matroid and m linear constraints [Chekuri et al '11]

Application: Conservation Planning

[w Golovin, Converse, Gardner, Morey – AAAI '11 Outstanding Paper]

How should we select land for conservation to protect rare & endangered species?

Case Study: Planned Reserve in Washington State

Mazama pocket gopher

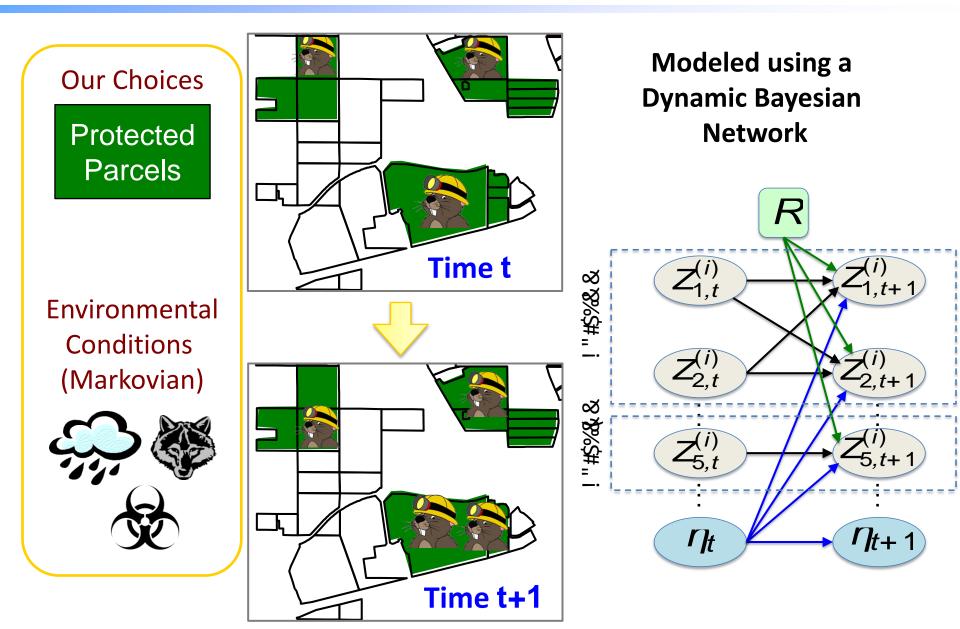
streaked horned lark

Taylor's checkerspot

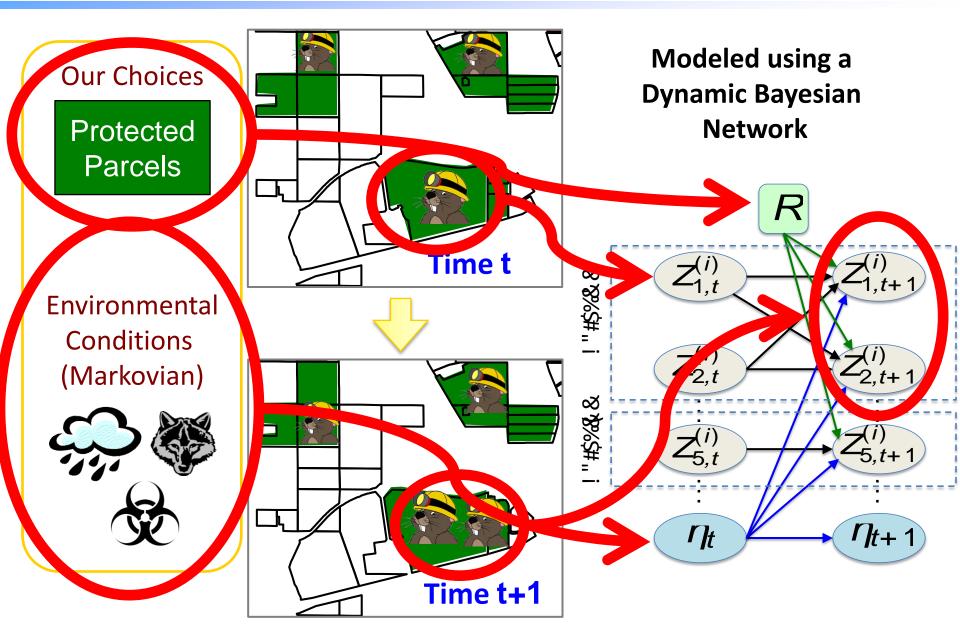
Problem Ingredients

- Land parcel details
- Geography: Roads, Rivers, etc
- Model of Species' Population Dynamics
 - Reproduction, Colonization, Predation, Disease, Famine, Harsh Weather, ...

Population Dynamics

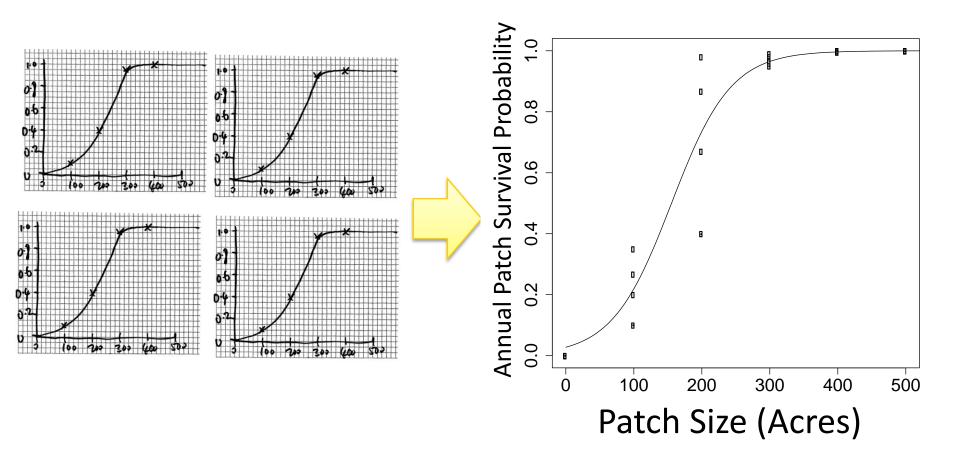


Population Dynamics

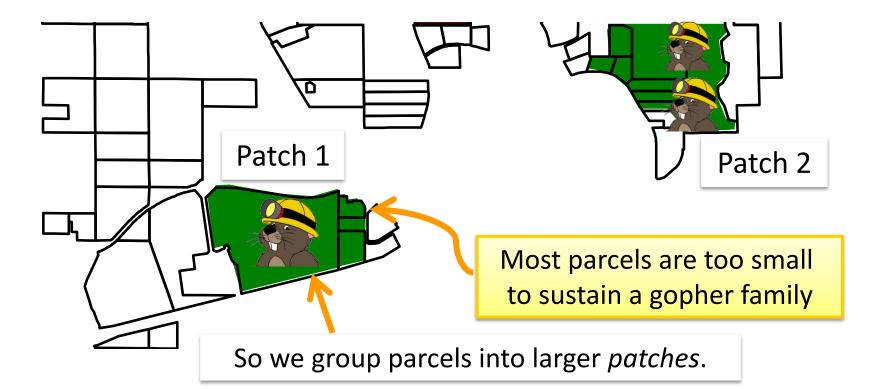


Model Parameters

- From the ecology literature, or
- Elicited from panels of domain experts

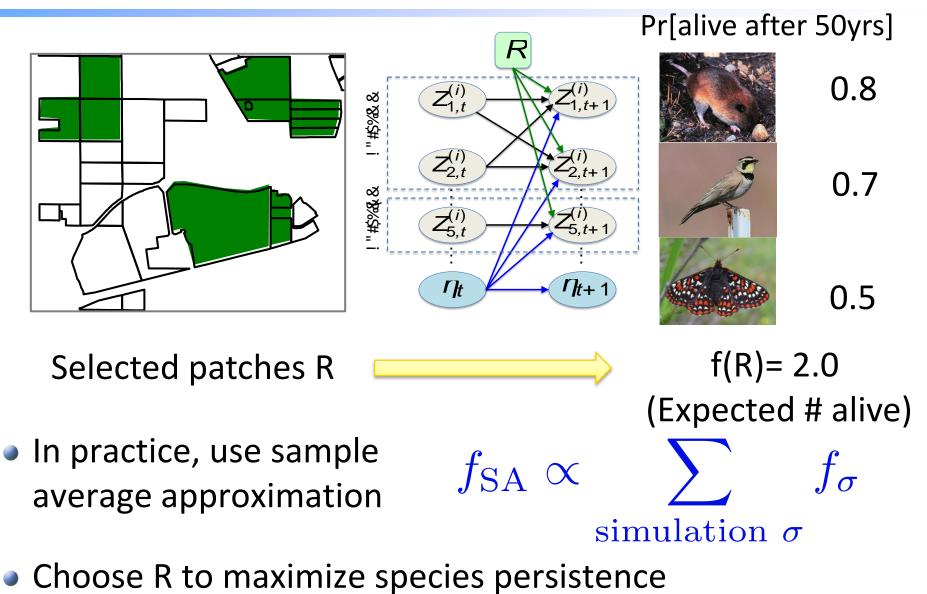


From Parcels to Patches



We assume no colonization *between* patches, and model only colonization *within* patches. We optimize over (sets of) patches.

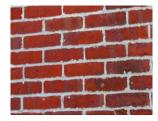
The Objective Function



"Static" Conservation Planning

 Select a reserve of maximum utility, subject to budget constraint

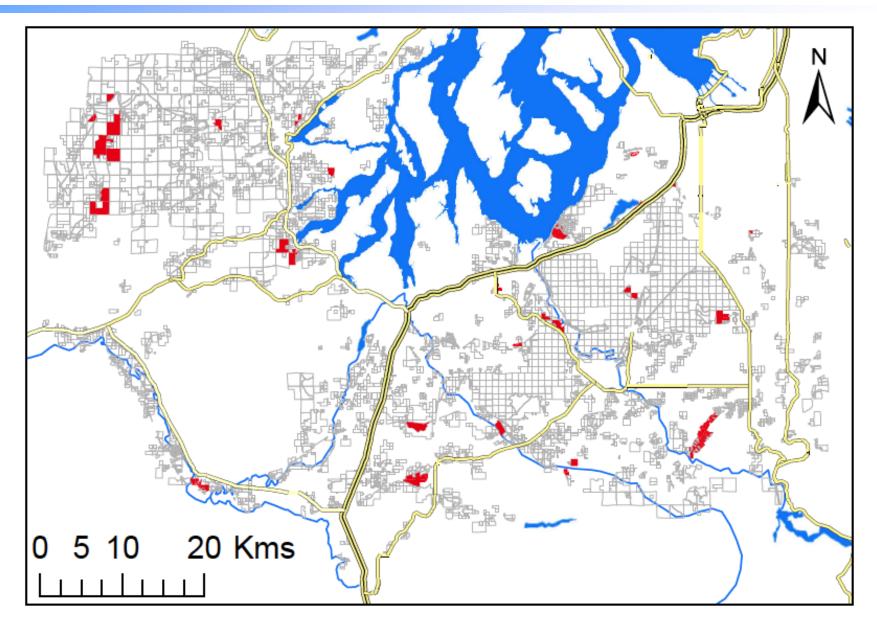
$$\max_{R} f(R) \text{ s.t. } c(R) \le B$$



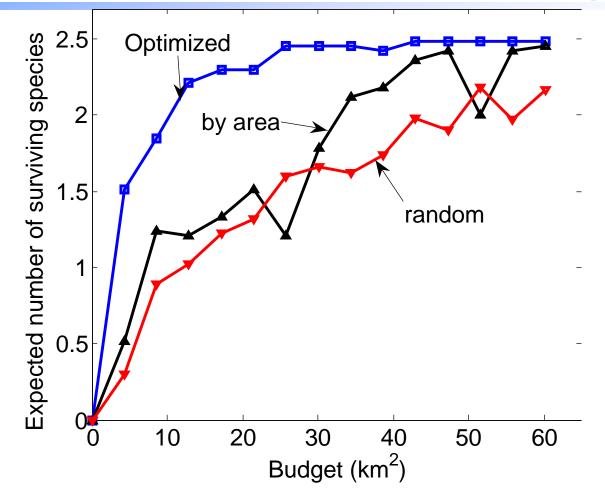
But f is submodular

 Can find a near-optimal solution!
 Even in "incentive-compatible" manner [Singer '10]

Solution



Results: "Static" Planning



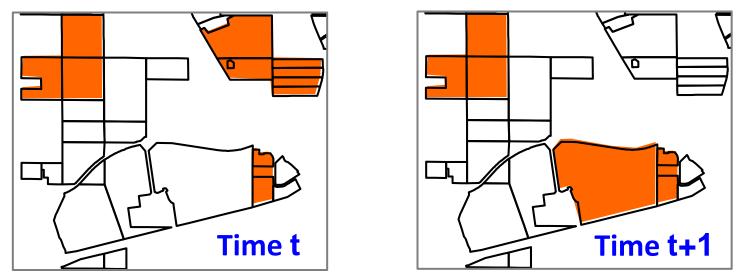
Can get large gain through optimization

Other interesting directions

- Many sensing problems involve maximization of monotonic submodular functions
 - Can use greedy algorithm to get near-optimal solutions!
 - Lazy evaluations provide dramatic speedup
- How can we handle more complex settings:
 - Complex constraints / complex cost functions?
 - Sequential decisions?

Dynamic Conservation Planning

- Build up reserve over time
- At each time step t, the budget B_t and the set V_t of available parcels may change

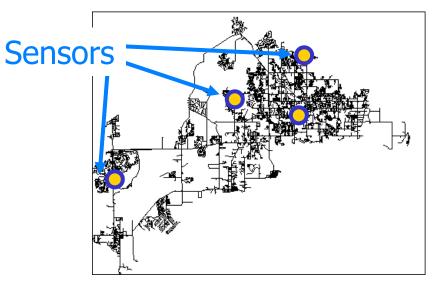


May learn from information we gain after selecting patches

Benefit of adaptivity

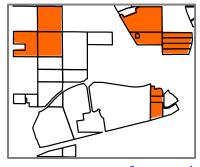
"A priori" decisions

Sequential decisions



Find near-optimal set A of sensor locations

Must commit to all actions in advance (no "observations")





Time t

Time t+1

Want near-optimal policy π for allocating resources based on observations

Is there a notion of submodularity for policies??

Problem Statement

Given:

- Items (patches, tests, ...) V={1,...,n}
- Associated with random variables $X_1, ..., X_n$ taking values in O
- Objective: $f: 2^V \times O^V \to \mathbb{R}$
- Policy π maps observation $\mathbf{x}_{\mathbf{A}}$ to next item

Value of policy
$$\pi$$
: $F(\pi) = \sum_{\mathbf{x}_V} P(\mathbf{x}_V) f(\pi(\mathbf{x}_V), \mathbf{x}_V)$
Patches picked by π
if world in state \mathbf{x}_V
NP-hard (also hard to approximate!)

Adaptive greedy algorithm

- Suppose we've seen $X_A = x_{A.}$
- Conditional expected benefit of adding item s:

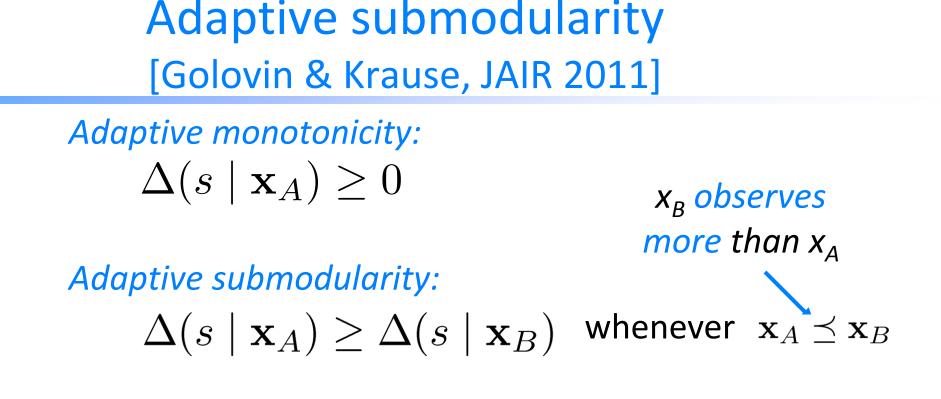
$$\Delta(s \mid \mathbf{x}_A) = \mathbb{E}\left[f(A \cup \{s\}, \mathbf{x}_V) - f(A, \mathbf{x}_V) \mid \mathbf{x}_A\right]$$

Adaptive Greedy algorithm efit if world in state xv

Conditional on observations **x**_A

Start with
$$A = \emptyset$$
For i = 1:k• Pick $s_k \in \operatorname{argmax} \Delta(s \mid \mathbf{x}_A)$ • Observe $X_{s_k} = x_{s_k}$ • Set $A \leftarrow A \cup \{s_k\}$

When does this adaptive greedy algorithm work??

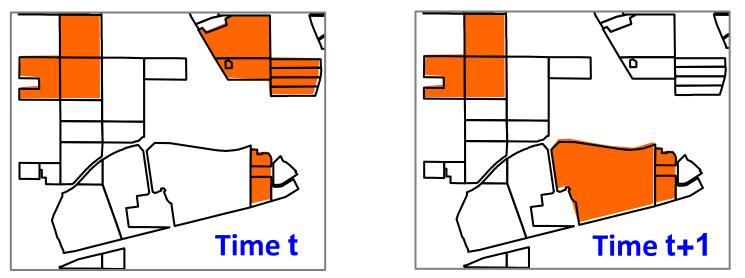


Theorem: If f is adaptive submodular and adaptive monotone w.r.t. to distribution P, then $F(\pi_{greedy}) \ge (1-1/e) F(\pi_{opt})$

Many other results about submodular set functions can also be "lifted" to the adaptive setting!

Dynamic Conservation Planning

- Build up reserve over time
- At each time step t, the budget B_t and the set V_t of available parcels may change



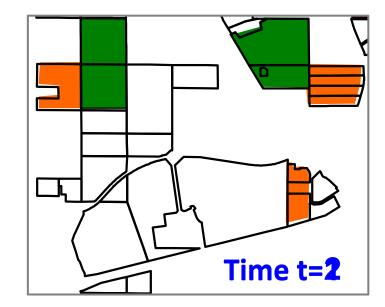
May learn from information we gain after selecting patches

• f is adaptive submodular in this setting! \bigcirc

Opportunistic Allocation for Dynamic Conservation

In each time step:

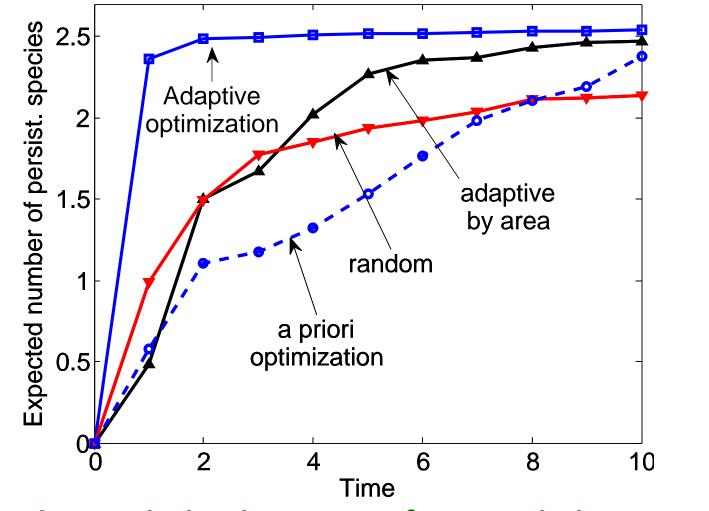
- Available parcels and budget appear
- Opportunistically choose near-optimal allocation



Theorem: We get at least 38.7% of the value of the best **clairvoyant** algorithm*

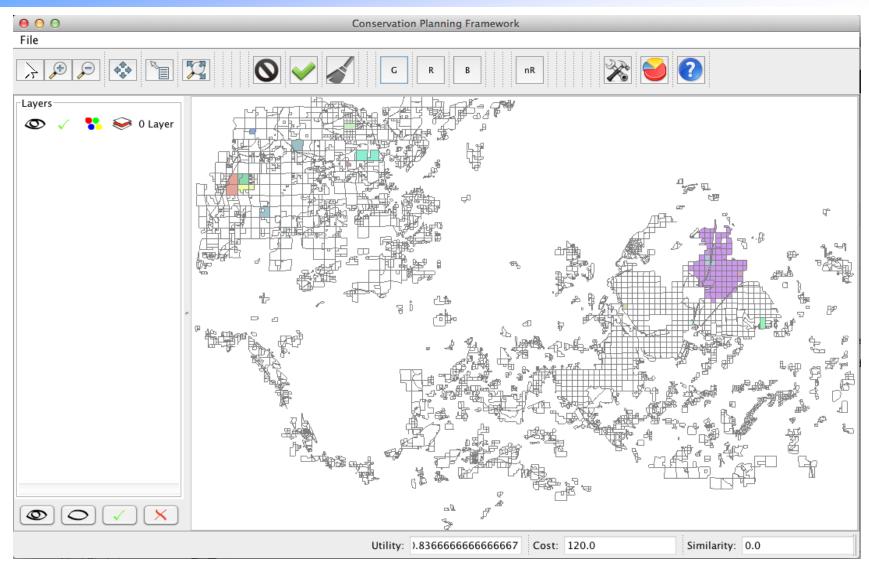
* Even under adversarial selection of available parcels & budgets!

Results



Adaptive optimization outperforms existing approaches

Decision-Support Tool [w Bogunovic, Converse]



Near real-time, interactive solver, see talk tomorrow!

Related Work

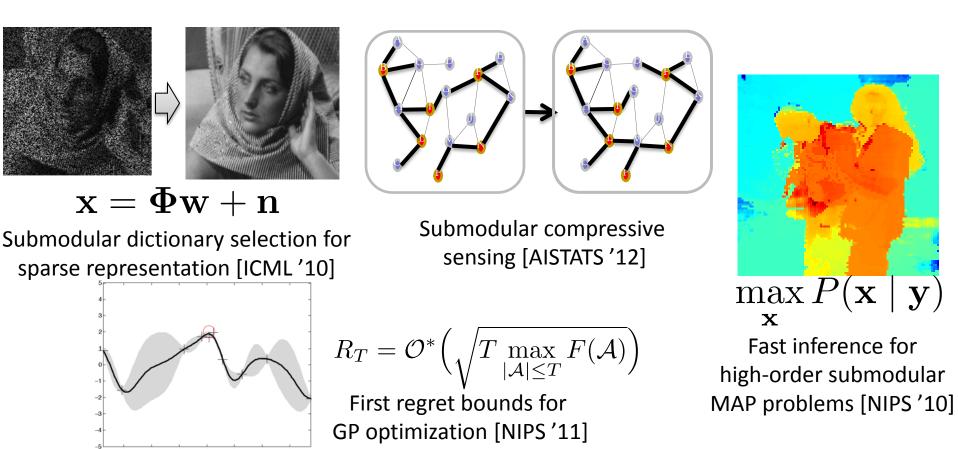
- Existing software
 - Marxan [Ball, Possingham & Watts '09]
 - Zonation [Moilanen and Kujala '08]
 - General purpose software
 - No population dynamics modeling, no guarantees
- Sheldon et al. '10
 - Models non-submodular population dynamics
 - Only considers static problem
 - Relies on mixed integer programming

Other applications of Adaptive Submodularity

- Stochastic set cover
- Active learning
- Bayesian experimental design / value of information
- Influence maximization in social networks

Submodular surrogates?

Submodularity in ML / AI



- MATLAB Toolbox for optimizing submodular functions (JMLR '10)
- Series of NIPS Workshops on Discrete Optimization in ML
 - → videos on *videolectures.net*

Conclusions

- Many applications in computational sustainability need large-scale discrete optimization under uncertainty
- Fortunately, some of those have structure: submodularity
- Submodularity can be exploited to develop efficient, scalable algorithms with strong guarantees
- Can handle complex constraints
- Adaptive submodularity allows to address sequential decision problems

