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Combinatorial optimization in 
computational sustainability 

Many applications in computational sustainability 
require solving large discrete optimization problems: 

 

Given finite set V wish to select subset A  
(subject to some constraints) maximizing utility F(A) 

 

 

 

These problems are the focus of this tutorial. 
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Wind farm Deployment 
[Changshui et al, Renewable Energy, 2011] 
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How should we deploy wind farms to maximize efficiency? 
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Conservation Planning 
[w Golovin, Converse, Gardner, Morey – AAAI ‘11 Outstanding Paper+ 

Which patches of land should we recommend? 
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Can only make a limited 
number of measurements! 
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Location across lake 

Robotic monitoring of rivers and lakes   

[with Singh, Guestrin, Kaiser, Journal of AI Research ’09] 

 Need to monitor large spatial phenomena 

 Temperature, nutrient distribution, fluorescence, … 

 
NIMS 
Kaiser 
et.al. 

(UCLA) 

Actual temperature Predicted temperature 
Use robotic sensors to 

cover large areas 

Where should we sense to get most accurate predictions? 



 Contamination of drinking water 
could affect millions of people 
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Monitoring water networks 
[with Leskovec, Guestrin, VanBriesen, Faloutsos, J Wat Res Mgt ‘08] 

 Place sensors to detect contaminations 

Where should we place sensors to quickly detect contamination? 

Sensors 

~$14K 

Contamination 
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Quantifying utility of sensor placements 

Model predicts impact of contaminations 

For each subset A of V compute sensing quality F(A) 

S2 

S3 

S4 
S1 

S2 

S3 

S4 

S1 

High sensing quality F(A) = 0.9 Low sensing quality F(A)=0.01 

Model predicts 
High impact 

Medium impact 
location 

Low impact 
location 

Sensor reduces 
impact through 
early detection! 

S1 

Contamination 

Set V of all  
network junctions 
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Sensor placement 

 Given: finite set V of locations, sensing quality F 

 Want:                      such that 

   

 

         NP-hard! 

  

 

 

 

 

 

 How well can this simple heuristic do? 

S1 

S2 

S3 

S4 

S5 

S6 
Greedy algorithm: 

Start with A = {} 

For i = 1 to k 

s* := argmaxs F(A U {s}) 

A := A U {s*} 
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Key property 1: Monotonicity 

S2 

S1 

Placement A = {S1, S2} 

S2 
S3 

S4 

S1 

Placement B = {S1, S2, S3, S4} 

F is monotonic: 
 
Adding sensors can only help 
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S2 
S3 

S4 

S1 

Key property 2: Diminishing returns 

S2 

S1 

S’ 

Placement A = {S1, S2} Placement B = {S1, S2, S3, S4} 

Adding S’  
will help a lot! 

Adding S’  
doesn’t help much New  

sensor S’ New sensor Y’ 

S’ B          A 

S’ 

+ 

+ 

Large improvement 

Small improvement 

Submodularity: 
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One reason submodularity is useful 

 Theorem [Nemhauser et al ‘78] 

 Suppose F is monotonic and submodular. Then 

 greedy algorithm gives constant factor approximation: 

 

 

 

Greedy algorithm gives near-optimal solution! 

In general, guarantees best possible unless P = NP! 
 

~63% 
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Battle of the Water Sensor Networks Competition 
[with Leskovec, Guestrin, VanBriesen, Faloutsos, J Wat Res Mgt 2008] 

Real metropolitan area network (12,527 nodes) 

Water flow simulator provided by EPA 

3.6 million contamination events 

Multiple objectives: Detection time, affected population, … 

Place sensors that detect well “on average” 

 



Reward function is submodular 

Claim: 
Reward function is monotonic submodular 

 

Consider event i: 

Ri(uk) = benefit from sensor uk in event i 
Ri(A) = max Ri(uk), ukA 

 Ri is submodular 
 

Overall objective: 

F(A) =  Prob(i) Ri(A) 

Submodular?? 

u1 

Ri(u1) Event i 

u2 

Ri(u2) 
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Closedness properties 

 F1,…,Fm submodular functions on V and 1,…,m ≥ 0 

 Then: F(A) = i i Fi(A) is submodular! 

 

 Submodularity closed under nonnegative linear 
combinations! 

 

 Extremely useful fact!! 

F(A) submodular   P() F(A) submodular! 

Multicriterion optimization:  
F1,…,Fm submodular, i>0  i i Fi(A) submodular 



Reward function is submodular 

Claim: 
Reward function is monotonic submodular 

 

Consider event i: 

Ri(uk) = benefit from sensor uk in event i 
Ri(A) = max Ri(uk), ukA 

 Ri is submodular 
 

Overall objective: 

F(A) =  Prob(i) Ri(A) 

 F is submodular! 

 Can use greedy algorithm to solve                    ! 

u1 

Ri(u1) Event i 

u2 

Ri(u2) 
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BWSN Competition results 
13 participants 

Performance measured in 30 different criteria 
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G: Genetic algorithm 

H: Other heuristic 
D: Domain knowledge 
E: “Exact” method (MIP) 

24% better performance than runner-up!  
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Simulated all                                           on 2 weeks / 40 processors 

152 GB data on disk 

 Very accurate computation of F(A) 

, 16 GB in main memory (compressed) 
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30 hours/20 sensors 

6 weeks for all 
30 settings  

3.6M contaminations 

Very slow evaluation of F(A)  
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Exhaustive search 
(All subsets) 

Naive 
greedy 

What was the trick? 
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“Lazy” greedy algorithm [Minoux ’78] 

 Lazy greedy algorithm: 

 First iteration as usual 

 Keep an ordered list of marginal 
benefits i from previous iteration 

 Re-evaluate i only for top 
element 

 If i stays on top, use it, 
otherwise re-sort 

a 

b 

c 

d 

Benefit (s | A) 

e 

a 

d 

b 

c 

e 

a 

c 

d 

b 

e 

Note:  Very easy to compute online bounds, use in other algo’s, etc. 
 [Leskovec, Krause et al. ’07] 
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Simulated all                                           on 2 weeks / 40 processors 

152 GB data on disk 

 Very accurate computation of F(A) 

Using “lazy evaluations”: 
1 hour/20 sensors 

Done after 2 days!  

, 16 GB in main memory (compressed) 
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6 weeks for all 
30 settings  

3.6M contaminations 

Very slow evaluation of F(A)  
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Exhaustive search 
(All subsets) 

Naive 
greedy 

Fast greedy 

  Submodularity  
   to the rescue: 

Result of lazy evaluation 
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Example: Windfarm deployment 
[Changshui et al, Renewable Energy, 2011] 
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1 

3 

Contribution of 2 
reduced due to wake effects 

Total power F(A) is monotonic submodular!  

Wind 



Example: Windfarm deployment 
[Changshui et al, Renewable Energy, 2011] 
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Greedy LazyGreedy Genetic Algo 

Power (kW) 79,585 79,585 78,850 

Runtime 2.5 min 10 sec 1.6 hours 



Other interesting directions 
Many sensing problems involve maximization 
of monotonic submodular functions 

Can use greedy algorithm to get near-optimal solutions! 

Lazy evaluations provide dramatic speedup 

 

How can we handle more complex settings: 

Complex constraints / complex cost functions? 

Sequential decisions? 

23 
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Non-constant cost functions 
For each s  V, let c(s)>0 be its cost 
(e.g., conservation cost, hardware cost, …) 

Cost of a set C(A) = sA c(s) 

Want to solve 
  
 A* = argmax F(A)  s.t.  C(A) ≤ B 

 

 Cost-benefit greedy algorithm: 
 Start with A := {}; 

 While there is an s  V\A  s.t. C(A U {s}) ≤ B 
  

 

  
A := A U {s*} 
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Performance of cost-benefit greedy 

 Want 
 
maxA F(A) s.t. C(A) ≤ 1 

 

 

 Cost-benefit greedy picks a. 

 Then cannot afford b! 

  

  Cost-benefit greedy performs arbitrarily badly! 

 

 

Set A F(A) C(A) 

{a} 2  

{b} 1 1 
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Cost-benefit optimization 
[Wolsey ‘82, Sviridenko ‘04, Krause et al ‘05+ 

 Theorem [Krause and Guestrin‘05] 
ACB: cost-benefit greedy solution and 

AUC: unit-cost greedy solution (i.e., ignore costs) 

 Then  
 max { F(ACB), F(AUC) } ≥ (1-1/√e) OPT 

 

 Can still compute online bounds and  
speed up using lazy evaluations 
 

 Note: Can also get 

(1-1/e) approximation in time O(n4)  [Sviridenko ’04] 

(1-1/e) approximation for multiple linear constraints [Kulik ‘09+ 

0.38/k approximation for k matroid and m linear constraints  
  [Chekuri et al ‘11+ 

~39% 



Application: Conservation Planning 
[w Golovin, Converse, Gardner, Morey – AAAI ‘11 Outstanding Paper+ 

How should we select land for conservation 
to protect rare & endangered species? 

Case Study: Planned Reserve in Washington State  

Mazama pocket gopher streaked horned lark Taylor’s checkerspot 



Problem Ingredients 

Land parcel details  

Geography: Roads, Rivers, etc 

Model of Species’ Population Dynamics 

Reproduction, Colonization, Predation, Disease, Famine, 
Harsh Weather, … 
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Model Parameters 

From the ecology literature, or 

Elicited from panels of domain experts 
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From Parcels to Patches 

So we group parcels into larger patches. 

Patch 1 Patch 2 

Most parcels are too small  
to sustain a gopher family 

We assume no colonization between patches, 
and model only colonization within patches. 

We optimize over (sets of) patches.  



The Objective Function 

In practice, use sample 
average approximation 

 

Choose R to maximize species persistence 
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“Static” Conservation Planning 
Select a reserve of maximum utility,  
subject to budget constraint 

  NP-hard 

  But  f  is submodular  
 

   Can find a near-optimal solution! 

   Even in “incentive-compatible”  
    manner *Singer ‘10+ 
 



Solution 

a 
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Optimized

random

by area

Results: “Static” Planning 

Can get large gain through optimization 



Other interesting directions 
Many sensing problems involve maximization 
of monotonic submodular functions 

Can use greedy algorithm to get near-optimal solutions! 

Lazy evaluations provide dramatic speedup 

 

How can we handle more complex settings: 

Complex constraints / complex cost functions? 

Sequential decisions? 
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Time t+1 

	
 
	
 

	
 	

 

Dynamic Conservation Planning 

Build up reserve over time  

At each time step t, the budget Bt and the set Vt of available 
parcels may change 

 

 

 

 

 

May learn from information we gain after selecting  patches 

Time t 

	
 
	
 

	
 	

 



Benefit of adaptivity 

Find near-optimal set A  
of sensor locations 
 

Must commit to all actions in 
advance (no „observations“) 

Want near-optimal policy π  
for allocating resources 
based on observations 
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Sensors 

Sequential decisions 

Is there a notion of  
submodularity for policies?? 

„A priori“ decisions 

Time t+1 
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Problem Statement 
 Given: 

Items (patches, tests, …) V=,1,…,n- 

Associated with random variables X1,…,Xn taking values in O 

Objective: 

Policy π maps observation xA to next item 
 

   Value of policy π: 

 

 

 Want 

 

 NP-hard (also hard to approximate!) 
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Patches picked by π 
if world in state xV 



Adaptive greedy algorithm 
Suppose we’ve seen XA = xA. 

Conditional expected benefit of adding item s: 

 

 

Adaptive Greedy algorithm: 

 Start with  

 For i = 1:k 

Pick 

Observe  

Set 
 

41  When does this adaptive greedy algorithm work?? 

Benefit if world in state xV 

Conditional on  
observations xA 



Adaptive submodularity 
[Golovin & Krause, JAIR 2011] 

 Adaptive monotonicity: 

 
 

 Adaptive submodularity: 

 

 

Theorem: If f is adaptive submodular and adaptive 
monotone w.r.t. to distribution P, then 

 F(πgreedy) ≥ (1-1/e) F(πopt) 
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xB observes  
more than xA 

whenever  

Many other results about submodular set functions 
can also be “lifted” to the adaptive setting! 



Time t+1 

	
 
	
 

	
 	

 

Dynamic Conservation Planning 

Build up reserve over time  

At each time step t, the budget Bt and the set Vt of available 
parcels may change 

 

 

 

 

 

May learn from information we gain after selecting  patches 

f  is adaptive submodular in this setting!  

Time t 

	
 
	
 

	
 	

 



Opportunistic Allocation for Dynamic Conservation 

     In each time step:  

Available parcels  

    and budget appear 

Opportunistically choose  

    near-optimal allocation 

 

 Theorem: We get at least 38.7% of the value of 
the best clairvoyant algorithm* 

* Even under adversarial selection of available parcels & budgets! 

Time t=1 Time t=2 

	
 
	
 

	
 	

 



Results 

Adaptive optimization outperforms existing approaches 
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Decision-Support Tool 
[w Bogunovic, Converse] 

46 Near real-time, interactive solver, see talk tomorrow! 



Related Work 

Existing software 

Marxan [Ball, Possingham & Watts ‘09+ 

Zonation [Moilanen and Kujala ‘08] 

General purpose software 

No population dynamics modeling, no guarantees 

 

Sheldon et al. ‘10 

Models non-submodular population dynamics 

Only considers static problem 

Relies on mixed integer programming 



Other applications of Adaptive Submodularity  
Stochastic set cover 

Active learning 

Bayesian experimental design / value of information 

Influence maximization in social networks 

... 

 

Submodular surrogates? 
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Submodularity in ML / AI 
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Fast inference for 
high-order submodular 

MAP problems [NIPS ’10] 

Submodular dictionary selection for 
sparse representation [ICML ’10] 

MATLAB Toolbox for optimizing submodular functions (JMLR ’10) 

Series of NIPS Workshops on Discrete Optimization in ML 
 videos on videolectures.net 

Submodular compressive  
sensing [AISTATS ’12] 

First regret bounds for  
GP optimization [NIPS ’11] 
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Conclusions 
Many applications in computational sustainabiity  
need large-scale discrete optimization under uncertainty 

Fortunately, some of those have structure: 
submodularity 

Submodularity can be exploited to develop efficient, 
scalable algorithms with strong guarantees 

Can handle complex constraints 

Adaptive submodularity allows to address  
sequential decision problems 
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Thanks: 

http://www.onr.navy.mil/

