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Principal Electricity Market Consideration D

electric power demand never N\
exceeds the potential offer |progyction follows /i>Consurnption
/

e producers are fully controllable
e barely any regulation on the consumer side

Opposite principles

e producers are hardly controllable
e simple mechanisms to control the consumer side

,
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Consumption follows > |Production | €l€CtriC power can only be

4 consumed if it Is available
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Electrictfying Challenge

Germany

e gives priority to
renewable sources

e rewards renewable energy
above market price

e dropped nuclear energy
after Fukushima incident

More challenges:

wﬁﬁw Sweden, UK, France, ....
UL
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source: http://www.wikipedia.org
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Electrictifying Basics
71 Guiding principle: Production follows Consumption

14 Base Assumptions:
= Consumption is a well-understood stochastic process
= Production is deterministic and fully controllable
2 Mass effects ensure smooth consumer behaviour
<= Grid state is observable (frequency, voltage)

71 Thus, good predictions and a bit of fine tuning do the job.

Control energy, can be subtracted

or added to the grid. Mostly pump storage.

= Indeed, this was the case for several decades.

uu@,@w Now: Things change rapidly. Minds change slowly.
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So, what's the challenge?

The integration of renewable energy

Renewable energy has much higher volatility and this volatility is uncontrollable.
Production turns into a stochastic process, as well!

Needed: increased prediction efforts for grid stabilization.

Volatility may exceed the available control energy.
On September 6, 2010:

Drastically more solar power in the net than announced the day before
Germany @ lunchtime: surplus of 7 GW

Complete negative control energy exhausted (- 4.3 GW)

Emergency reserve imported from neighbouring countries (- 2.8 MW)
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Challenges for Economic Electricity Usag

» Volatility effects the market price for short term electricity.

 Changes workload characteristics for traditional power plants.

Load Changes of Demand and Generation

electric electric
power Today power

Total consumption ?
e load I .
Thermal residual . |
o] load

e anergy load

t = 24h t=24h

201X

Some Concerns:

What happens once renewable energy production
is higher than total consumption?

What production entities are needed,
If all base consumption is covered by renewable energy?

[H, Wiechmann: EFTA 2009] Holger Hermanns



How to make money with this?

The Principle of electrical Swap-Deals (schematic account)

=== Originally planned feed-in according to standard load profile
== Modified load profile related too swap-deals

Commercialization of electricity at high price
periods (red block) and countertrade in periods
of low prices {green block)

Electric power in [MW]

llllllllllllllllllllllllllllllllllllllllllllllll

o @ oo om0 oFiling“theloadprofile | u o o o s . _ _
L8 8 9 & JF | with groups of consumers  [F 2T 8P 25 a5 AF 3 8 W8 ST 8 F 08 AT 4T AV ¥ 4
gpN P e e X ; . ; g :

o Qu[" a7 o (;39' Y S A S A N N R S UG N S U I S

while keeping the network stable?
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telecommunication 0,84

* Light bulbs?
* [roning?

* PC?

° TV?

 Electrical water warming?

freezing 8,85

ing 5,02

inelastic : elastic

light 1 rized air 3,03

* Climate control?

partially elastic
consumption

° COOllng? washing 1,15

. . . dishwashing 1,
 Air pressure applications? wer 23,65

air conditio
» Off-peak storage heating?
 Geothermal heating?

 Electrical and hybrid electrical vehicles?

The segment of elastic consumers in Germany
Is in the order of a few tens of GW.
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Challenges for Stable Electricity Usage?
 Volatility and synchrony of solar power affects grid stability
EWE interventions 2009: <1 per week
2011: >1 per day
- 75% of all installations are non measured micro-generators
are balanced out once per year.

- Starting 2000, regulations are being adjusted at an increasing pace.

- Local distribution grid coordinators thus far reported averages

te we

seasonal differences, day-night differences
forbidden as of January 1, 2011

-Target growth 1.5 GW per year as of 2009 -- thenl10 GW
Actual growth in 2011 is 7.5 GW -- now 25 GW
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A concrete problem:

Nictrihiitad Ctahilicatinn
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The problem:

Legal bodies ruled in 2007 that a solar power
generator observing the frequency to overshoot

50,2 Hertz, must shut off.

Because of the synchronicity of observations,
this leads to oscillations, if not blackouts.

What we do:
We get inspired by network protocols.

©®
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Last mile distributed control

“Too many microgenerators .
to roll out centralized control* \

"J
\ |

-+ Self stabilization problem "'i
but with a shared state: R )

“Frequency
and voltage

-+ Oscillations are a problem.

-+ Current state of legislation: off at 50.2 Hz
urrent state of engineering:




What the rules say

[ freguency over time

100 150 200 250 300 350 400 450 500

time

———————— Reaction delay 0, 10 or 20 seconds.

' — frequency
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Analysis: Model Checking

Modelling ‘:

Next
Requirement

done

ermanns



& mime - brp.modest

Eile Edit View Model Tools Help
125 I [ G @ [0 O p ot o i
brp.modest™ s X
process Sender() -
{
bool bit:
int (0. .MAX) rc:
clock c;
do {
i invariant(c <= 0) new_file {= i=0, rc=0 =};
try {
do {
:: when(i < N) urgent {= i=i+l =};
do {
:: // send frame
invariant (c <= 0) put_k {= ff=(i==
invariant (c <= TS) alt {
:: get_1 {= bit=!bit, rc=0, c=0
// ack received 3
urgent break
:: when(c == TS && rc < MaX)
// timeout, retry
{= re=rc+l, c=0 =}
: when(c == TS5 && rc == MAX && |z
// timeout, no retries left
s_zmk i= rc=0, c=0 =};
urgent throw(error)
: when(c == TS && rc == MAX &&
// timeout, no retries left
s_dk {= rc=0, c=0 =}: |

urgent throw(error)

}
:: when(i == N)
// file transmission successfully compls
urgent s_ok {= first_ file_done=true =};
urgent break
}
}
catch error {
// File transfer did not succeed: wait,
invariant (c <= SYNC) when(c == SYNC)
s_restazt {= bit=false, first_file_done=true

L This is real: w

then

brp.modest (Analysis)

process Receiver ()
{
bool r ff, r_1f, r_ab:
bool bit: -

“ m »

‘ ¥ Error List

Analysis type: [modes: Discrete-event simulation \d I l Configure
Experiments: MAX=2 N=16 TD=1
Progress
L J
» | Details
@ Model Compilation
& Experiment 1
~  Messages
i) Removing 2 declared but unused symbol(s) ‘él
1) Got 5 processes, 25 variables, 17 action symbols, 4 exception symbols -
brp.modest (Results) v X
Type of analysis: modes: Discrete-event simulation
Analysis options: Runs=2000 RNG=Fibonacci
Completed at:  15.11.2011 17:44:14
Results
Property Result Observations Standard Deviation *
T Rz True 2000 n/a
P A 0,000000000000000E+000 2000 0,000000000000000E+
P B 0,000000000000000E+000 2000 0, OGODOOOOOOOODDOE-Q-_..E
P 1 5,000000000000000E-004 2000 2,236067977499790E—
P 2 0,000000000000000E+000 2000 0,000000000000000EH
P_3 5,000000000000000E-004 2000 2,236067977499790E
E A 0,000000000000000E4+000 2000 0,000000000000000EHE
9,995000000000001E-001 2000 2,2360679774599790E
WW modestchiecketriat
EMa 3y sl o |
Emin 3,351650000000000E+001 2000 2, 15"1’557"7':{:1.3llaBZEH-TJ
. ‘ 1 | »

|l Save Results
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What the VDE suggests

[ freguency over time
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l'naquanéy over ime

100 150 200 250 300 350 400 450 500

time
'— frequency — backaround generatbn‘
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What we do

1 Study populations of
solar producers in a last mile

L\ 1)
“Controllers | - \,4 y
“with or without reaction time 14 %
~‘on-off = with or without _
=1VDE exponential backoff \x;\
“probabilistiic

with dynamic size of die

1 Synchronous, asynchronous, drifting

11 Stochastic background load scenarios
= Constant Profiles Random walk

Holger Hermanns



Additive-increase, multiplicative decreas D

Used In:TCP
Goal: Use maximal bandwidth, but share it fairly

ldea:. Increase use in small, additive steps
Decrease on bad event by a factor <1

freq uenCy R equal bandwidth share
g
S
50.2 Hz g
~
S
| > . 5
50.0 Hz IMEe connection t throughput R

Holger Hermanns



What we are thinking of

[ freguency over time

AIMD: Additive increase,
multiplicative decrease -

o2 /

fraqnanéy over iime

fmquené' over time

[

'— frequency — backaround generatbn‘
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Frequency-dependent

Nnrahahilictie cwan h
P URNOCANMIIIOLULILU OVVILUIL ]I
Used in:IEEE 802.11e avoid oscillations

Goal: Adapt to system state, but randomised
ldea:. Switch on or off with probability
dependent on observed frequency

probability
1
on

off

0
500Hz 502Hz 504 Hz cauency
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More of this kind

Frequency-based [ frequency over time
probabilistic /

switching

]
1:.
0,2 /

frequency over time

fmqnanéy over ime
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S0?
0,15
Goodput
0,14
0,13

0,12

0,11

” 24
o A
+
O
Reaction delay 0 seconds
0,225 0,45 0,675 0,9

+ onoff O linear probonoff Avallablllty
X diesize-probonoff A expbackoff < aimd

+ diesize O diesize-expbackoff Holger Hermanns



So”?
0,15

Goodput

0,113

0,075

0,038

O
<
S
O
b2 A
Reaction delay 10 seconds
0,2 0,4 0,6 0,8

+ onoff O linear probonoff Avallablllty
X diesize-probonoff A expbackoff < aimd

+ diesize O diesize-expbackoff Holger Hermanns




So”?
0,15

Goodput

0,113

0,075

0,038

O
+ o
O
" A
Reaction delay 20 seconds
0,2 0,4 0,6 0,8

+ onoff O linear probonoff Avallablllty
X diesize-probonoff A expbackoff < aimd

+ diesize O diesize-expbackoff Holger Hermanns




Our current favorite: O

Frequency based | s
probabilistic switching |

plus exponentipl
backoff /

fmquanéy over time

fmqnqnéy over time
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Exponential backoff

Used in: Ethernet

Goal: Mediate access to shared medium, decentralised

ldea: Try to send.
Collision? Wait time given by 2-sided die roll.
Try to send.
Collision? Wait time given by 4-sided die roll.
Try to send.
Collision? Wait time given by 8-sided die roll.
Try to send.
Collision? Walit time given by 16-sided die roll.

= adjust wait time to number of competitors

O10)

T “
HHHHHH“
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Where do these numbers come from?

=1 32 photovoltaic microgenerators.

-2 Decide upon observed frequency every 20 sec.
~ Time points initially picked uniformly.

2 Linear impact on frequency.

- Reaction delay is 0, 10 or 20 seconds.

= Background frequency generated by random walk.
-2 All modelled in Modest.
210000 simulation runs of modes discrete event simulator.

©®
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Fairness

I

Max/min/
average
output

per generator:
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What remains to be done?
11 A lot,

14 Team up with
1J design space explorators
I machine learners
I domain experts
71 decision bodies
11 patent fanatics

11 Consider voltage instead of frequency
2 spatial layout can become important (dependent on setup)

<1 Develop good abstractions

= Increase awareness
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Conclusion
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A broader perspective

On the long run,
the power grid stability problem will be
a major concern on all layers
of the grid hierarchy

What is needed, is a grid managment operating
 highly local,
* highly automatic,
* highly decentralized, and
 highly flexible

Holger Hermanns



New operational principles for power grid 3 ];Z

Grid neutrality: There is no discrimination in the way the grid
shares its capacity among its users.

Grid fairness: |deally, the grid is fair in the sense that if n users
are sharing a grid path, then on average each user can use
about 1/n-th of the capacity.

Scalability: Distributed, decentralized control is a prime
means to assure scalabillity, together with hierarchy.

PDriviaec\y/ En 1icar
1 11 \ . L=l I\A (W E® ) Wy |

decision making based on public global information and
private local information.

Intelligent edges, dumb core: Inteligence resides in the
edges of the grid, i.e. Is embedded into the end user
appliances. The core of the grid is barely smart.



New operational principles are old! 3 _f;Z

Grid neutrality: There is no discrimination in the way the grid
shares its capacity among its users.

Grid fairness: |deally, the grid is fair in the sense that if n users
are sharing a grid path, then on average each user can use
about 1/n-th of the capacity.

Scalability: Distributed, decentralized control is a prime
means to assure scalabillity, together with hierarchy.
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decision making based on public global information and
private local information.

Intelligent edges, dumb core: Inteligence resides in the
edges of the grid, i.e. Is embedded into the end user
appliances. The core of the grid is barely smart.



An internet analogy! D _i;j.
Grid neutrality: There is no discrimination in the way the -grid
shares its capacity among its users.

Grid fairness: |deally, the grid is fair in the sense that if n users
are sharing a grid path, then on average each user can use
about 1/n-th of the capacity.

Scalability: Distributed, decentralized control is a prime
means to assure scalabillity, together with hierarchy.
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decision making based on public global information and
private local information.

Intelligent edges, dumb core: Inteligence resides in the
edges of the grid, i.e. Is embedded into the end user
appliances. The core of the grid is barely smart.



Turning the power grid into a power web [ D

This Is a vision.

Caution:
The protocols and technigues
driving the web have been developed
at a time when no one cared.

This time things are different:
The transformation must be done
while our society relies on it
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