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Introduction
Various routing models each considering some aspects of finding “best”
solutions:

• Shortest Path Problem: Finding a shortest path also yields an efficient
path regarding energy consumption.

• Shortest Weight-Constrained Path Problem: Optimize more than one
target function, e.g. time and energy-consumption.

• Time-Dependent and Multi-Modal Routing: Finding shortest paths de-
pending on the time, caused for example by including public trans-
portation.

• Energy-Optimal Routing: Considering energy constraints for electric
vehicles.

• Stochastic Routing: Minimizing expected costs, maybe given certain
conditional probabilities.

• Rerouting: After finding an efficient path and turning to a different
direction (or gaining additional information), quickly find an alternate
efficient route.

Each model comes with its own set of algorithms, our aim is to find a
model unifying some aspects while still allowing for most algorithms
known for the shortest path problem.

Prototype
The Technische Universität München (TUM) developed a prototypic rout-
ing service, which is further developed at the University of Lübeck, avail-
able at www.isp.uni-luebeck.de/greennav. It is used to eval-
uate different routing algorithms. You can see a range prediction of an
electric vehicle.

Definition: State-Based Routing
•G = (V,E) is a graph,

• S is a set of states preordered by ≤S,

• S : V → P(S) describes possible states at each vertex,

•W is a set of monotone (x1 ≤S x2 → f (x1) ≤S f (x2)) and extensive
(x ≤S f (x)) weights S  S,

•W ′ : E →W is a weighting,

such that

•W ′(x, y) is a weight S(x)→ S(y), and

• the extension ofW ′ again isW : walks→W given by

W(γ) =W ′(v0, v1) ◦ . . . ◦W ′(vk−1, vk)

for all walks γ = (v0, . . . , vk), k ≥ 0 (identity for k = 0).

Objective:

•Given x, y ∈ V and initial state s ∈ S(x), find at least one correspond-
ing path for each minimal element in min(W(walks from x to y)(s))
(except for equivalence), where

min(S) := {s ∈ S | ¬∃s′ ∈ S : s′ < s}.

Relation to Time-Dependent Routing
Using a total order (or total preorder) the state-based routing problem is
almost equivalent to time-dependent routing. Time-dependency is real-
ized mainly by two changes to the common shortest path problem:

• Edge costs f : R → R+ are functions from departure times to time
costs.

• FIFO property: x1 + f (x1) ≤ x2 + f (x2) for all x1 ≤ x2.

Given an edge cost function f , we can define an appropriate g with
g(x) = x + f (x), i.e. considering the arrival time, such that

• g is extensive, because f is non-negative, and

• g is monotone due to the FIFO property.

Thus time-dependent routing is a special case of state-based routing.

Energy Constraints
The set of states consists of battery charges in B := [0, K]∪ {−∞} (and
altitudes):

•Maximum capacity K > 0

• Initial charge J ∈ [0, K]

• Recuperation (regaining energy)

• Can not drive with an empty battery

Example:
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Battery transformation function of given path:

x v1 v2 v3 y

b = 18 b− c

a = 6 a− c

Battery charge more than b = 18 energy units are wasted. Having less
than a = 6 energy units renders this path useless. The overall costs are
c = 2 + 4− 8 + 3 = 1.

State-Based Profile Search
As it was done for the time-dependent routing problem, we may con-
sider the problem of finding optimal solutions for each possible starting
state. In terms of energy constraints, one path may be more efficient than
another path, if able to invest a higher amount of battery charge.
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• xvy less costs (30), but requires J ≥ 80,

• xwy higher costs (40), but is possible with J ≥ 40.

An optimal solution, called a policy, therefore maps battery charges J ≥
80 to xvy, all 40 ≤ J < 80 to xwy and all other J to no path.

Therefore, combining both functions by maximizing the energy value
may yield a non-trivial cost function:
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Stochasticity
A direct generalization of energy-constraints using stochas-
ticity is done by modeling the battery charge as a random
variable

J : Ω→ B (with B = [0, K] ∪ {−∞}).

The edge cost functions then are random variables itself
Ω → (B → B), which can be formalized as a state trans-
formation function as (Ω → B) → (Ω → B) using the
same ω ∈ Ω.

The questionable decision is the choice of the partial pre-
order ≤. Two approaches are J1 ≤ J2, if and only if

E(J1 | J1 > −∞) ≥ E(J2 | J2 > −∞), (1)
P (J1 ≥ c) ≥ P (J2 ≥ c), c ∈ [0, K]. (2)

The former approach (1) yields non-monotone functions
and thus does not fit our state-based approach. The latter
(2) is an adaptation from Uludag et al. [14] and actually
fits the state-based approach quite smoothly.

Algorithm Design
The computational problem here arises from the fact, that
an optimal solution depends on the initial state. This ren-
ders a backward search impossible without doing a pro-
file search. The same goes for almost all precomputation
methods.

However, by considering the profile search, we may use
existing algorithms with minor modifications as was shown
for example by Eisner et al. [3]. The general concept
for modifying existing algorithms is to use a partial order
queue and to reconsider the stop condition.

Algorithms Models Elementary Operations

Dijkstra, A∗

Bidirectional

Partial Order Queue

Shortest Path
Algorithms

SBRP total.

SBRP part.

SBPRP

solves

solves

 

Comparison
of States

Evaluation
of Weights

Comparison
of policies

Combination
of policies

Concatenation
of policies

Evaluation
of policies

In contrast to priority queues, partial order queues provide
two essential functions:

•min - to find any minimal object, and

• front - to query the set of all minimal objects.

Conclusions and Future Work
First tests yielded reasonable results, but we just started to
implement various shortest path algorithms for the state-
based routing problem and its profile version. Hence run-
time and space analyzations are near future goals. The
model itself is promising, comprising time-dependent rout-
ing, battery constraints, stochasticity and multi-criteria rout-
ing, but the running time is an important question to an-
swer soon.

In the long run we aim to extend GreenNav by more so-
phisticated algorithms and services. An egoistic routing
algorithm is but the first step towards ecological sustain-
ability. Multi-modality and stochasticity are two important
points to consider.
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