
FM TREE: A DURABLE FLASH MEMORY SEARCH TREE
JAMES N. CLAY III AND KEVIN A. WORTMAN { JACLAY AND KWORTMAN }@FULLERTON.EDU

PROBLEM
The lifespan of flash memories has been of se-

rious concern since their inception; flash memory
degrades proportionally to the number of times
it is erased [1]. However newer multi-level flash
memory has properties that may ease this prob-
lem.

This is an interesting problem, for:

1. Writes may only increase flash cell values.
2. Erasures happen in entire blocks, not

individual cells.
3. Erasures are costly in terms of device wear.
4. Writes and erasures are slow, reads and in-

crements are fast.

CONTRIBUTIONS
We have created a durable variant of a com-

monly used database and operating system data
structure.

The method is based on [2]. Our main contri-
butions are specific changes to B-tree operations:

1. Perform erasures lazily.
2. Relax key and value storage requirements.
3. Allow unused to nodes to remain in the tree.
4. Retain logarithmic space and time bounds.

We also give theoretical results indicating that our
FM tree always has fewer erasures than a B-tree.

RESULTS

0 2000 4000 6000 8000 10000 12000
Number of Operations

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r 
o
f 
E
ra

su
re

s

Total Erasure Count

Unmodified B-Tree
FM-Tree

0 2000 4000 6000 8000 10000 12000
Number of Operations

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

N
u
m
b
e
r 
o
f 
W
ri
te
s

Write Count

Unmodified B-Tree
FM-Tree

0 2000 4000 6000 8000 10000 12000
Number of Operations

0

100

200

300

400

500

600

700

800

N
u
m

b
e
r 
o
f 
E
ra

su
re

s

Max Erasure Count for an Unmodified B-Tree

Unmodified B-Tree

0 2000 4000 6000 8000 10000 12000
Number of Operations

5

10

15

20

25

30

N
u
m

b
e
r 
o
f 
E
ra

su
re

s

Max Erasure Count for an FM Tree

FM-Tree

Total Erasures Write Count Max Erasure Count

0 2000 4000 6000 8000 10000 12000
Number of Operations

350

400

450

500

550

600

650

M
a
x
im

u
m

 b
lo

ck
 n

u
m

b
e
r 
a
d
d
re

ss
e
d

Max addressed memory

Unmodified B-Tree
FM-Tree

0 2000 4000 6000 8000 10000 12000
Number of Operations

0

1

2

3

4

5

6

N
u
m

b
e
r 
o
f 
R
e
a
d
s

1e7 Read Count

Unmodified B-Tree
FM-Tree

Max Addressed Memory Read Count

We present a variety of experiments performed
on a Python implementation of the FM Tree. We
emulate the flash memory, FM Tree, and B-tree to
run a variety of benchmarks. Every experimen-
tal trial consists of randomly generated data sets
that are inserted into both trees. Each tree is in-
serted with a baseline of 1000 elements. Following
these initial insertions, 10000 randomly chosen in-
sertions and deletions are performed. We repeat
this process a total of 4 times independently and

determine the average for each data point. We
then calculate the FM Tree performance by com-
paring the erasures, reads and writes between it
and the B-tree. This process indicates that the
FM Tree performs 27 times to 72.2 times fewer
erasures. While the total read count was higher,
the total writes and erasures performed were far
lower. As these are the most expensive operations
in terms of time, realistically the FM Tree would
also be far faster than the B-tree.

REFERENCES

[1] Anxiao Jiang, Robert Mateescu, Moshe Schwartz, and Je-
hoshua Bruck. Rank modulation for flash memories. IEEE
Trans. Inf. Theor., 55:2659–2673, June 2009.

[2] Siddhartha Sen and Robert Tarjan. Deletion without rebal-
ancing in multiway search trees. In Yingfei Dong, Ding-
Zhu Du, and Oscar Ibarra, editors, Algorithms and Com-
putation, volume 5878 of Lecture Notes in Computer Science,
pages 832–841. Springer Berlin / Heidelberg, 2009.

Further references available in paper or presentation.

FUTURE WORK
We believe these durability gains can be

applied to other fundamental data structures.
We are currently researching applying the same
bounds to hash table data structures, however
there are many other data structures which may
benefit from these gains as well. Image and com-
pressed audio data structures should also benefit
from our approach. Future work may also look
into the areas of finding better rebuild constants
and tighter bounds on erasure count.

METHOD

Deletion of Key 20 The standard B-Tree required keys to be sorted
to enable fast tree traversal. As every B-Tree node
must contain an ordered list of the keys for traver-
sal, inserts into and deletes from the tree amplify
the number of writes necessary to store the key
values. Inserting a new key value at a specified
place in the list requires shifting all of the other
node values to the right; without this restriction
we can perform economical insertions that mini-
mally increase the net state of the block they are
stored in.

To prevent erasures during element deletions,
we add an active/inactive flag to each key-pointer
record in our nodes. Individual key-pointer en-
tries can be deleted by simply toggling that flag,
rather than erasing an entire block. When insert-
ing a key-pointer record, the tree can attempt to
reuse an inactive key-pointer record.

Forcing a specific number of cells to remain va-
cant within each node increases the number of op-
tions where a key can be subsequently inserted.

To attune the tree to periodic rebuilding we
include the concept of ghost nodes. An internal
node may become a ghost node if enough dele-
tions occur that all the node contains is a forward-
ing pointer to its last child. This node is part of the
space that the B− tree requires [2].


