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Motivation

Traditionally ecologists have studied predator—prey
interactions and the underlying qualitative behavior of
populations:

° Oscillatory and chaotic dynamics are common in food web

systems for reasonable biological parameters (Hastings and

Powell, 1991)
® We consider a household (predator) poaching a protected
species (prey):

® How is the qualitative behavior of a protected population

affected by economic parameters?




Theoretical setting

e Household living on the edge of a preserve which houses a

protected species.

® Myopic allocation of time to wage employment, poaching
and leisure:
® No value placed on resource in future.

® Poaching is subject to risky open access:
® Fine incurred if caught poaching,

® Study the effects of economic parameters on protected

species’ dynamics and household welfare.




Economic model of the household

e Maximize U, =U(C,I,T") subject to:
e time constraint: T =T" +T" +T"
* given prey population : X,
® C 20: own consumption of prey
e [ 20: income (= wages + black market sales — fines)

L . :
o T 20: leisure time




Protected species dynamics

* Logistic growth function for protected species:

F(X, )=rX, (1 — (X, /K)Z) , K 1s the carrying capacity.

* Schaefer production (poaching) function:

H(T",X )=qT"X. ,qisthe catchability coefficient.

* Protected species’ population dynamics:
Xt+1 = Xt +F(Xt)_H TtH’Xt)
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Logistic growth with a skew parameter (z > 1)

Fowler (1981) suggested that

relationship between X, and

(1-X,/K) may be non-linear:

Xt+1 :Xt +FXI(1—(XI/K)Z)

* For large animals, density-
dependence is greater when X

is closer to K.

» Restricts growth rate at low

densities.

* Important for modeling

different prey species.
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Economic (policy) parameters

* Anti-poaching policy parameter: & >0
Ve~ k(T -T")

e Probability of detecting poaching: ¢(T," ) = (T, /T

e Black market price of harvest: P >0
* Protected Area wage rate: W >0
* Fine for poaching: F >0

e Expected household income:  E[I,]|=P(H,-C,)+WT," - o(T" )F




Utility functions and solution algorithm

* Household utility:
Elu]=a(E[L )Y () (1+nc?) ; Cobb-Douglas utility

ElU ]=alE[1L]) + 7(TtL )g +nC” ; additive-separable utility

* Initial prey population: X,
* Solve numerically for poaching time ( ; ) and wage time ( t ) in each

period (1.e. household myopic)
* Population evolves according to: X, =X +F(X)-H (7:H ,X)

t+
* Repeat for 100 time steps: check for convergence to steady-state
value.

-
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Base case parameters

Initial population (X,) 0.5
Carrying capacity (K ) 1.0
Intrinsic growth rate (r) 1.0
Catchability coefticient (q) 1.0
Utility parameter (@) 1.0
Utility parameter (f3) 1.0
Utility parameter () 0.3
Utility parameter (w) 0.3
Utility parameter (1) 5.0
Black-market price (P) 5.0
Wage rate (V) 1.0

Fine (F) 1.0
Anti-poaching policy (k) 1.0
Time constraint (1) 1.0
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Base case simulations (Cobb-Douglas utility)

z =1 (no skew)

Poaching time (T")

/

Prey population (X)

X_ =K(0-qT" /r)
X_=04107,T" =0.5893

- Convergence to analytical steady state
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z = 2 (skew)

1/z

X_ =KQA-4qT"/r)
X_ =0.5159, 77 =0.7338
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Base case simulations (additive-separable utility)

e Population = Poaching time
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Time 2>
X_ =K(0-qT"/r)
X_=0.7797, T =0.2202

- No convergence to steady state; 4-point cycle observed
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How stable is a solution?

Robert May (1971) studied the simple o=

logistic equation:

POPULATION (%)

Xt+1:rXt(1_Xt)

For small changes in r, one observes

complicated dynamics in X:
° Period—doubling bifurcation

® Deterministic chaos

Bifurcation observed lynx populations

® [ncreased trapping effort led to

high-amplitude chaotic dynamics
(Schafter (1985), Gamarra and
Sole (2000))

Let us vary our policy parameters one

at a time. ..
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Population

Bifurcation points: black-market price (2 <P <DH)

z =1 (no skew) z = 2 (skew)
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Bifurcation points: wage rate (0.5 < W < 2)

z =1 (no skew) z = 2 (skew)
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Population

Bifurcation points: fine level (O < F < 2)

z =1 (no skew)
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4 N
Bifurcation points: probability of getting caught (O <x < 15)

z =1 (no skew) z = 2 (skew)
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Lessons

® Economic parameters may affect the collapse and renewal of
a protected population.

° Policy—induced oscillations more pronounced for changes in P
and W, as opposed to F.

® Over-investment in anti-poaching enforcement may lead to
unintended consequences (for some range of K).

* Differences in model structure atfect outcomes (Cromsigt et

al., 2002).

® Density-dependence assumptions are crucial: (X/K)”

® Implications for large animals (z 1) and bush-meat (z | ) species.

e Choice of utility function form is important.




