Poaching and the Dynamics of a Protected Species

Adrian Lopes and Jon Conrad

Cornell University

3rd International Conference on Computational Sustainability University of Copenhagen, Denmark July 5th - 6th, 2012

Motivation

- Traditionally ecologists have studied predator-prey interactions and the underlying qualitative behavior of populations:
 - Oscillatory and chaotic dynamics are common in food web systems for reasonable biological parameters (Hastings and Powell, 1991)
- We consider a household (*predator*) poaching a protected species (*prey*):
 - How is the qualitative behavior of a protected population affected by *economic* parameters?

Theoretical setting

- Household living on the edge of a preserve which houses a protected species.
- Myopic allocation of time to wage employment, poaching and leisure:
 - No value placed on resource in future.
- Poaching is subject to *risky* open access:
 - Fine incurred if caught poaching.
- Study the effects of economic parameters on protected species' dynamics and household welfare.

Economic model of the household

- Maximize $U_t = U(C_t, I_t, T_t^L)$ subject to:
 - time constraint: $T = T_t^H + T_t^W + T_t^L$
 - given prey population : X_t
- $C_t \ge 0$: own consumption of prey
- $I_t \ge 0$: income (= wages + black market sales fines)
- $T_t^L \ge 0$: leisure time

Protected species dynamics

- Logistic growth function for protected species: $F(X_t) = rX_t \left(1 - (X_t/K)^z\right)$, *K* is the carrying capacity.
- Schaefer production (poaching) function: $H(T_t^H, X_t) = qT_t^H X_t$, *q* is the catchability coefficient.
- Protected species' population dynamics: $X_{t+1} = X_t + F(X_t) - H(T_t^H, X_t)$

Logistic growth with a skew parameter (z > 1)

Fowler (1981) suggested that relationship between X_t and $(1-X_t/K)$ may be non-linear:

$$X_{t+1} = X_t + rX_t (1 - (X_t/K)^z)$$

• For large animals, densitydependence is greater when *X* is closer to *K*.

• Restricts growth rate at low densities.

• Important for modeling different prey species.

Economic (policy) parameters

- Anti-poaching policy parameter: $\kappa > 0$
- Probability of detecting poaching: $\phi(T_t^H) = (T_t^H/T)e^{-\kappa(T-T_t^H)}$
- Black market price of harvest: P > 0
- Protected Area wage rate: W > 0
- Fine for poaching: F > 0

• Expected household income: $E[I_t] = P(H_t - C_t) + WT_t^W - \phi(T_t^H)F$

Utility functions and solution algorithm

• Household utility: $E[U_t] = \alpha(E[I_t])^{\beta} (T_t^{L})^{\gamma} (1 + \eta C_t^{\omega}) \quad ; \text{Cobb-Douglas utility}$

 $E[U_t] = \alpha(E[I_t])^{\beta} + \gamma(T_t^{L})^{\varepsilon} + \eta C_t^{\omega} \quad ; \text{ additive-separable utility}$

- Initial prey population: X_0
- Solve numerically for poaching time (T_t^H) and wage time (T_t^W) in each period (i.e. household myopic)
- Population evolves according to: $X_{t+1} = X_t + F(X_t) H(T_t^H, X_t)$
- Repeat for 100 time steps: check for convergence to steady-state value.

Base case parameters

Parameter	Value
Initial population (X_0)	0.5
Carrying capacity (K)	1.0
Intrinsic growth rate (r)	1.0
Catchability coefficient (q)	1.0
Utility parameter (α)	1.0
Utility parameter ($oldsymbol{eta}$)	1.0
Utility parameter (γ)	0.3
Utility parameter (ω)	0.3
Utility parameter (η)	5.0
Black-market price (<i>P</i>)	5.0
Wage rate (W)	1.0
Fine (F)	1.0
Anti-poaching policy (<i>k</i>)	1.0
Time constraint (T)	1.0

Base case simulations (additive-separable utility)

 \rightarrow No convergence to steady state; 4-point cycle observed

How stable is a solution?

- Robert May (1971) studied the simple logistic equation: $X_{t+1} = rX_t (1 - X_t)$
- For small changes in *r*, one observes complicated dynamics in *X*:
 - Period-doubling bifurcation
 - Deterministic chaos
- Bifurcation observed lynx populations
 - Increased trapping effort led to high-amplitude chaotic dynamics (Schaffer (1985), Gamarra and Sole (2000))
- Let us vary our policy parameters one at a time...

Bifurcation points: black-market price $(2 \le P \le 5)$

z = 1 (no skew)

z = 2 (skew)

Lessons

- Economic parameters may affect the collapse and renewal of a protected population.
- Policy-induced oscillations more pronounced for changes in *P* and *W*, as opposed to *F*.
- Over-investment in anti-poaching enforcement may lead to unintended consequences (for some range of κ).
- Differences in model structure affect outcomes (Cromsigt *et al.*, 2002).
 - Density-dependence assumptions are crucial: $(X/K)^z$
 - Implications for large animals $(z \uparrow)$ and bush-meat $(z \downarrow)$ species.
- Choice of utility function form is important.