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� Traditionally ecologists have studied predator-prey 
interactions and the underlying qualitative behavior of 
populations:
� Oscillatory and chaotic dynamics are common in food web 
systems for reasonable biological parameters (Hastings and 

Motivation

systems for reasonable biological parameters (Hastings and 
Powell, 1991) 

� We consider a household (predator) poaching a protected 
species (prey):
� How is the qualitative behavior of a protected population 
affected by economic parameters?  



Theoretical setting

� Household living on the edge of a preserve which houses a 
protected species. 

� Myopic allocation of time to wage employment, poaching 
and leisure: 
� No value placed on resource in future. � No value placed on resource in future. 

� Poaching is subject to risky open access: 
� Fine incurred if caught poaching. 

� Study the effects of economic parameters on protected 
species’ dynamics and household welfare.   



Economic model of the household 

� Maximize subject to:  

� time constraint:

� given prey population : Xt

� : own consumption of  prey
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� : own consumption of  prey

� : income (= wages + black market sales – fines)

� : leisure time
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Protected species dynamics

� Logistic growth function for protected species:  

, K is the carrying capacity.

Schaefer production (poaching) function: 
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� Schaefer production (poaching) function: 

, q is the catchability coefficient. 

� Protected species’ population dynamics:  
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Logistic growth with a skew parameter (z > 1)

Fowler (1981) suggested that 
relationship between Xt and 

(1-Xt/K) may be non-linear:  

• For large animals, density-
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• For large animals, density-
dependence is greater when X
is closer to K. 

• Restricts growth rate at low 
densities.

• Important for modeling 
different prey species. 



Economic (policy) parameters

� Anti-poaching policy parameter:

� Probability of  detecting poaching: 

� Black market price of  harvest:  

� Protected Area wage rate:

Fine for poaching: 
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� Fine for poaching: 
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Utility functions and solution algorithm 

� Household utility: 

; Cobb-Douglas utility

; additive-separable utility
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� Initial prey population: X0
� Solve numerically for poaching time        and wage time        in each 
period (i.e. household myopic)  

� Population evolves according to: 

� Repeat for 100 time steps: check for convergence to steady-state 
value.   
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Parameter Value

Initial population (X0) 0.5

Carrying capacity (K ) 1.0

Intrinsic growth rate (r) 1.0

Catchability coefficient (q) 1.0

Utility parameter (α) 1.0

Utility parameter (β ) 1.0

Base case parameters

Utility parameter (β ) 1.0

Utility parameter (γ) 0.3

Utility parameter (ω) 0.3

Utility parameter (η) 5.0

Black-market price (P ) 5.0

Wage rate (W ) 1.0

Fine (F ) 1.0

Anti-poaching policy (κ) 1.0

Time constraint (T ) 1.0



Base case simulations (Cobb-Douglas utility)

Poaching time (TH)

z = 1 (no skew) z = 2 (skew)

5893.0,4107.0
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� Convergence to analytical steady state

Prey population (X)

7338.0,5159.0
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Base case simulations (additive-separable utility)
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� No convergence to steady state; 4-point cycle observed
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How stable is a solution?

� Robert May (1971) studied the simple 
logistic equation: 

� For small changes in r,  one observes 
complicated dynamics in X: 

� Period-doubling bifurcation

� Deterministic chaos
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� Deterministic chaos

� Bifurcation observed lynx populations 

� Increased trapping effort led to 
high-amplitude chaotic dynamics 
(Schaffer (1985), Gamarra and 
Sole (2000))

� Let us vary our policy parameters one 
at a time…



Bifurcation points: black-market price (2 ≤ P ≤ 5) 

z = 1 (no skew) z = 2 (skew)
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Bifurcation points: wage rate (0.5 ≤ W ≤ 2) 

z = 2 (skew)z = 1 (no skew)
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Bifurcation points: fine level (0 ≤ F ≤ 2) 

z = 1 (no skew) z = 2 (skew)
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Bifurcation points: probability of getting caught (0 ≤ κ ≤ 15) 

z = 1 (no skew) z = 2 (skew)
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Lessons

� Economic parameters may affect the collapse and renewal of 
a protected population. 

� Policy-induced oscillations more pronounced for changes in P 
and W, as opposed to F.  

� Over-investment in anti-poaching enforcement may lead to 
unintended consequences (for some range of κ). unintended consequences (for some range of κ). 

� Differences in model structure affect outcomes (Cromsigt et 
al., 2002). 
� Density-dependence assumptions are crucial: (X/K)z

� Implications for large animals (z   ) and  bush-meat (z   ) species. 

� Choice of utility function form is important.     


