Integrated planning of biomass inventory and energy production

Marco Chiarandini¹ Niels Kjeldsen^{1,2} Napoleão Nepomuceno³

¹Department of Mathematics and Computer Science, University of Southern Denmark ²Model development, DONG Energy Thermal Power A/S ³Universidade de Fortaleza, Programa de Pós-Graduação em Informática Aplicada, Fortaleza, Brazil

July 5th, 2012

Outline

- 1. Production planning and investment evaluation Changing fuel: From coal to wood pellets
- 2. Mathematical model

Mixed integer linear programming model

3. Benders decomposition

Benders optimality cuts Handling multiple scenarios

4. Results

Outline

- 1. Production planning and investment evaluation Changing fuel: From coal to wood pellets
- 2. Mathematical model

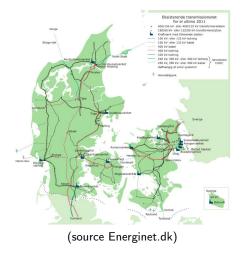
Mixed integer linear programming model

- Benders decomposition Benders optimality cuts Handling multiple scenario
- 4. Results

Investment evaluation Mathematical model Benders decomposition Results

Danish energy system

Investment evaluation Mathematical model Benders decomposition Results



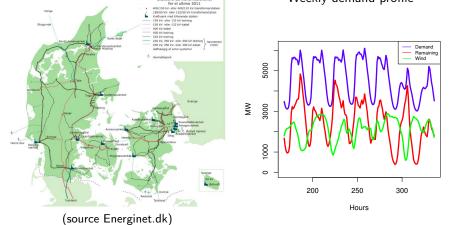
M. Chiarandini, N. Kjeldsen, N. Nepomuceno .::. Integrated planning of biomass inventory and energy production

Danish energy system

Mathematical model Benders decomposition Results

Investment evaluation

Weekly demand profile



Eksisterende transmissionsnel

M. Chiarandini, N. Kjeldsen, N. Nepomuceno .::. Integrated planning of biomass inventory and energy production

Energy production

- Uncontrollable:
 - Wind power
 - Solar power
- Controllable
 - Thermal units:

Providing heat to the local heating area

- Connections to neighboring countries
- Other sources:
 - SmartGrid
 - Electric cars

Overview of Avedøre power plant

Investment evaluation Mathematical model Benders decomposition Results

Wood pellet storage at Avedøre

Investment evaluation Mathematical model Benders decomposition Results

Investment evaluation Mathematical model Benders decomposition Results

9

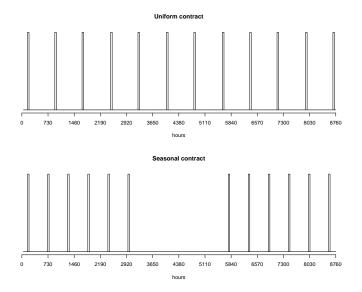
Fuel delivery processes

Coal logistics

Wood pellets logistics

Investment evaluation Mathematical model Benders decomposition Results

Biomass contracts



Two stage stochastic approach

- Biomass contracts must be decided a year ahead.
- ► But future demand, prices and exact delivery times are unknown ~→ uncertainty.

Two stage stochastic approach (look-ahead policy):

- First stage: long term decisions on biomass contracts might yield:
 - Running out of fuel (underflow)
 - Running out of storage space (overflow)
- ▶ Second stage: optimize when uncertainty is revealed
 - Production of electricity and heat.
 - Foreign trade (only electricity).
 - Using an alternative (fossil) fuel
 - Redirection of deliveries.

12

Outline

1. Production planning and investment evaluation Changing fuel: From coal to wood pellets

2. Mathematical model Mixed integer linear programming model

 Benders decomposition Benders optimality cuts Handling multiple scenarios

4. Results

Mixed integer linear programming model

Several scenarios for future uncertainty

Objective function (minimize):

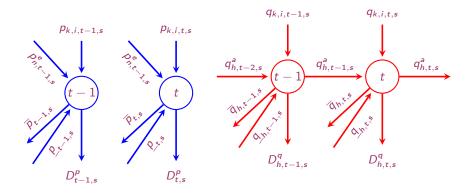
- Cost of biomass contracts
- Use of fossil fuel
- Foreign trade
- Over/under production (slack/surplus demand)

Constraints:

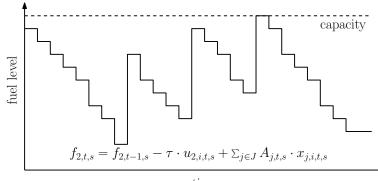
- Electricity and heat demand
- Power plant production (including trade with neighboring countries)
- Biomass fuel levels and redirection of deliveries

Constraints Electricity and heat balance

Electricity



Constraints Biomass fuel level constraints

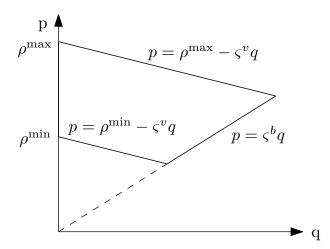


time

Constraints Modeling power plant production

Investment evaluation Mathematical model Benders decomposition Results

Cogeneration power plant



The full model

$$\begin{split} & \prod_{\substack{i=1\\j \in I_{i}}}^{\infty} \sum_{\substack{i=1\\j \in I_{i}}}^{\infty} \sum\substack{i=1\\j \in I_{i}}^{\infty} \sum \sum\substack{i=1\\j \in I_{i}}}^{\infty} \sum \sum\substack{i=1\\j \in I_{i}}^{\infty} \sum \sum \sum\substack{i=1\\j \in I_{i}}^{\infty} \sum \sum\substack{i=1\\j \in I_{i}}^{\infty} \sum \sum$$

s.t.		
$\tau \cdot D_{t,s}^p = \sum_{k \in K} \sum_{i \in I} \tau \cdot p_{k,i,t,s} + \sum_{n \in N} \tau \cdot p_{n,t,s}^{\epsilon} - \overline{p}_{t,s}$		power demand (1h)
$\tau \cdot D_{h,t,s}^{q} + q_{h,t,s}^{a} = \sum_{k \in K} \sum_{i \in I_{h}} \tau \cdot q_{k,i,t,s} - \bar{q}_{h,t,s} + q_{i}$	$\mathbf{h}_{t,s} + q_{h,t-1}^a, \forall h \in H, \forall t \in T, \forall s \in S$	heat demand (1i)
$q_{h,t,s}^a \le B_h^q$	$\forall h \in H, \forall t \in T, \forall s \in S$	heat accumulator (1j)
$p_{k,i,t,s} + \varsigma_i^v \cdot q_{k,i,t,s} \le \rho_i^{\max} \cdot v_{k,i,t,s}$	$\forall k \in K, \forall i \in I, \forall t \in T, \forall s \in S$	maximum effect (1k)
$p_{k,i,t,s} + \varsigma_i^v \cdot q_{k,i,t,s} \ge \rho_i^{\min} \cdot v_{k,i,t,s}$	$\forall k \in K, \forall i \in I, \forall t \in T, \forall s \in S$	minimum effect (11)
$p_{k,i,t,s} \ge \varsigma_i^b \cdot q_{k,i,t,s}$	$\forall k \in K, \forall i \in I_e, \forall t \in T, \forall s \in S$	extraction units (1m)
$p_{k,i,t,s} = \varsigma_i^b \cdot q_{k,i,t,s}$	$\forall k \in K, \forall i \in I_b, \forall t \in T, \forall s \in S$	back pressure units (1n)
$q_{k,i,t,s} = 0$	$\forall k \in K, \forall i \in I_c, \forall t \in T, \forall s \in S$	condensing units (1o)
$\epsilon_k \cdot u_{k,i,t,s} = \frac{3.6}{\eta_i} (p_{k,i,t,s} + \varsigma_i^v \cdot q_{k,i,t,s})$	$\forall k \in K, \forall i \in I, \forall t \in T, \forall s \in S$	energy production (1p)
$f_{i,t,s} = f_{i,t-1,s} - \tau \cdot u_{2,i,t,s} + \sum_{j \in J} A_{j,t,s} \cdot x_{j,i,t,s}$	$\forall i \in I, \forall t \in T, \forall s \in S$	biomass level (1q)
$f_{i,t,s} \le B_i^f$	$\forall i \in I, \forall t \in T, \forall s \in S$	biomass capacity (1r)
$p_{n,t,s}^{\epsilon} \leq E_n^{\max}$	$\forall n \in N, \forall t \in T, \forall s \in S$	power purchase (1s)
$p_{n,t,s}^e \ge E_n^{\min}$	$\forall n \in N, \forall t \in T, \forall s \in S$	power sale (1t)
$z_{i,t,s} = \sum_{k \in K} v_{k,i,t,s}$	$\forall i \in I, \forall t \in T, \forall s \in S$	fuel type (1u)
$y_{i,t,s} \ge z_{i,t,s} - z_{i,t-1,s}$	$\forall i \in I, \forall t \in T, \forall s \in S$	plant operation (1v)
$\sum_{i \in I} x_{j,i,t,s} \le w_j$	$\forall j \in J, \forall t \in T, \forall s \in S$	redirection (1w)
$p, \overline{p}, \overline{q}, q^{a}, \underline{p}, \underline{q}, u, f \in \mathbb{R}^{+}$		(1x)
$p^{e} \in \mathbb{R}$		(1y)
$w, x, y, z, v \in \mathbb{B}$		(1z)

Outline

1. Production planning and investment evaluation Changing fuel: From coal to wood pellets

 Mathematical model Mixed integer linear programming mode

3. Benders decomposition Benders optimality cuts Handling multiple scenarios

4. Results

Benders Decomposition

We consider the MILP with *complicating y*-variables, which are the biomass contracts:

$$\min_{x,y} \quad z = c^{T}x + f^{T}y$$
$$Ax + By \ge b$$
$$y \in Y$$
$$x \ge 0$$

Benders Decomposition

We consider the MILP with *complicating y*-variables, which are the biomass contracts:

$$\min_{x,y} \quad z = c^{T}x + f^{T}y$$
$$Ax + By \ge b$$
$$y \in Y$$
$$x \ge 0$$

or emphasizing the two stage approach:

$$\min_{y \in Y} \left[f^{\mathsf{T}} y + \min_{x \ge 0} \left(c^{\mathsf{T}} x | Ax \ge b - By \right) \right]$$

M. Chiarandini, N. Kjeldsen, N. Nepomuceno Integrated planning of biomass inventory and energy production 20

Investment evaluation Mathematical model Benders decomposition Results

Benders optimality cuts

Given a specific set of biomass contracts \overline{y} the dual of the inner problem is:

$$\max_{u} f^{T} \overline{y} + (b - B\overline{y})^{T} u$$
$$A^{T} u \le c$$
$$u \ge 0$$

The solution \overline{u} to the dual problem gives a lower bound to the original problem.

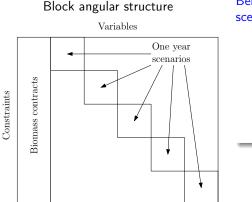
The lower bound is valid for all biomass contracts y and the generalization gives:

Benders optimality cut

$$z \geq f^T y + (b - By)^T \overline{u}.$$

Handling multiple scenarios

Investment evaluation Mathematical model Benders decomposition Results



Benders optimality cuts for multiple scenarios

$$\min_{y \in Y} f^T y + \frac{1}{|S|} \sum_{s \in S} z_s$$
s.t. $z_s \ge (b^s - B^s y)^T u_k^s$
 $\forall s \in S, k = 1 \dots K$

M. Chiarandini, N. Kjeldsen, N. Nepomuceno .::. Integrated planning of biomass inventory and energy production 24

Outline

1. Production planning and investment evaluation Changing fuel: From coal to wood pellets

 Mathematical model Mixed integer linear programming model

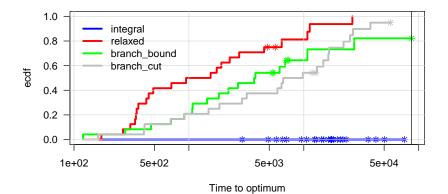
 Benders decomposition Benders optimality cuts Handling multiple scenarios

4. Results

Investment evaluation Mathematical model Benders decomposition **Results**

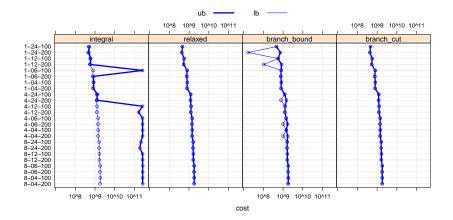
Time to optimality

Empirical cumulative distribution function of the time to completion of the run for the four models



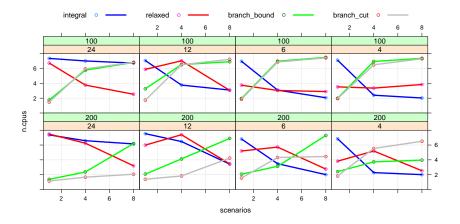
M. Chiarandini, N. Kjeldsen, N. Nepomuceno .::. Integrated planning of biomass inventory and energy production 26

Optimality gap



Exploitation of computational resources

Average number of CPUs used during a run for varying number of scenarios (x-axis) and number of contracts and step size (strip text in the panels).



Conclusions

- Biomass logistics complicates long term planning
- Relaxing some of the binary variables does not impact significantly the total cost assessment
- ▶ It is important to consider several scenarios and flexible contracts
- Benders relaxation does not improve solution times but it is able to exploit computational resources

 optential improvement by primal heuristics + more aggressive cuts (future work)

Investment evaluation Mathematical model Benders decomposition **Results**

Thank you for your attention!