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Abstract. We consider the task of optimizing the B-tree data structure,
used extensively in operating systems and databases, for sustainable us-
age on multi-level flash memory. Empirical evidence shows that this new
flash memory tree, or FM Tree, extends the operational lifespan of each
block of flash memory by a factor of roughly 27 to 70 times, while still
supporting logarithmic-time search tree operations.
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1 Introduction

Flash memory has seen growing usage in recent years across all areas of com-
puting technology; devices utilizing flash include tablets, cell phones, and USB
drives. The lifespan of flash memories has been of serious concern since their
inception; flash memory degrades proportionally to the number of times it is
erased. While significant advances have been made to combat this effect, flash
usage continues to grow in areas where rewrite-intensive operations are necessary.
We consider the problem of extending the operational lifetime of flash memory
by avoiding erase operations, at the expense of some additional time and space
overhead.

2 Background

2.1 Flash Memory

Multi-level flash memory is a form of NAND random access memory (RAM) ca-
pable of storing one of q > 1 discrete states in each flash cell. These q values may
interpreted as nonnegative integers in the range [0, q − 1]. Cells are aggregated
into blocks of fixed size. Individual multi-level flash cells may be incremented,
which is a fast and non-destructive operation. However, idiosyncratically, bucket
states can only be decreased by resetting an entire block to state 0 en masse.
These resets or erasures are costly both in terms of time of the operation and
lifetime of the device. Typical block erases take between 1.5-2 milliseconds in
comparison to seek or write times which are in the tens or hundreds of microsec-
onds. Each NAND flash device has a set number of expected erasure cycles
it can perform before failing. Wear distribution can be done in multiple ways
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ranging from a purely round robin approach to keeping the most actively used
blocks in RAM. However recent advances in multiple level flash memory data
representation relaxes the requirement that a block must be erased before it
can be rewritten. Since erasures are a limiting factor to both the durability and
write throughput of multi-level flash memory, we investigate approaches to avoid
erasures, at the cost of modest constant-factor expenditures of space and CPU
time. In particular, a search operation takes takes O(log2 B · logB n) time in a
classical B-tree, or O(B logB n) time in an FM-tree. Both are O(log n) when B
is treated as constant. We chose to allow 8 bits per flash cell. A slight drawback
to this choice is that current generation MLC flash cells support up to 4 bits per
cell. While our results should still be positive on smaller cells they will not be
as noticable due to the smaller cell size.

2.2 Tree Types

Our FM tree is an amalgam of ideas from established search tree data structures.
In this section we survey their properties. A Bayer McCreight B-Tree, henceforth
denoted B-tree, is a type of balanced search tree developed for managing large
blocks of data, particularly in file-systems and databases. A B+ tree resembles
a B-tree, with the addition of redundant node links that facilitate tree traversal
in common database operations. B− trees are a relaxed version of the common
B+ tree where the notoriously complex post-deletion rebalancing operation is
omitted. Perhaps surprisingly, Sen and Tarjan showed that, despite postponing
rebalance operations, B− trees still boast asymptotically optimal update op-
erations up to amortization, and may be implemented simply with attractive
constant factors.

2.3 A Durable B-tree

In creating a durable B-tree we have made a variety of changes to the implemen-
tation of both operations on and storage of the keys within the B-tree. These
alterations reduce the maximum number of erasures per block and the average
number of erasures across all blocks.

– Block erasures are performed lazily, postponing them for as long as possible.

– The requirement that key/value pairs be sorted within nodes is relaxed. This
gives the insertion operation leeway to reuse key/value slots without erasing
the block, but makes searching a single node take O(B) rather than O(logB)
time.

– As in the B− tree, the delete operation marks unused nodes barren rather
than actually splicing the node out of the tree. Barren nodes are ignored
until the tree is eventually garbage collected and rebuilt. This allows a node
to be excised by toggling flash cell(s) representing a boolean barren flag,
without performing block erasures.
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3 Analysis

We prove that an FM tree supports the search, insert, and delete operations
all in amortized O(log n) time, matching the lower bound for amortized search
tree data structures. We show that, for any sequence of operations, an FM tree
performs strictly fewer erasures than a conventional B-tree.

4 Experimental Results

We present a variety of experiments performed on a Python implementation
of the FM Tree. We emulate the flash memory, FM Tree, and B-tree to run a
variety of benchmarks. Every experimental trial consists of randomly generated
data sets that are inserted into both trees. Each tree is inserted with a baseline
of 1000 elements. Following these initial insertions, 10000 randomly chosen in-
sertions and deletions are performed. We repeat this process a total of 4 times
independently and determine the average for each data point. We then calculate
the FM Tree performance by comparing the erasures, reads and writes between
it and the B-tree. This process indicates that the FM Tree performs 27 times
to 72.2 times fewer erasures. While the total read count was higher, the total
writes and erasures performed were far lower. As these are the most expensive
operations in terms of time, realistically the FM Tree would also be far faster
than the B-tree.

5 Conclusion

We find that the FM-Tree is a more durable, faster variant of the B-tree with
properties that make it intrinsically better for operating on flash memory. We
also show that the erasure count for the FM Tree is drastically smaller (27 to 72
times) than that of a B-tree.


