Sensitivity Analysis of a Large Scale Integrated Land Use and Transportation System

Introduction

Why uncertainty quantification (UQ) for integrated land use and transportation models (ILUTMs)?

- UQ helps us characterize and reduce uncertainty.
- Little work done to quantify uncertainty [2].
- Important for accurate forecasting of land use and transportation demands.

Impact of sensitivity analysis

- Ranks parameters according to their impact on output uncertainty.
- Helps in calibration and model validation.
- Focus of this work
- Sensitivity analysis of land use part TRANUS [1], Grenoble, France.
- Total number of uncertain parameters were 100.
- Total effect [3] of each uncertain input parameters on the QoI. Given calculated (X) and observed (X^o) land use assignments.

$$Q = ||X - X_o||_2^2$$

where, $|| \cdot ||_2$ is the \mathcal{L}_2 norm.

• Use of high performance computing for faster computation.

Table 1: Description of the sectors.

Sector number	Description	Sector Type
1	Industrial employment	Employment
2	Public employment	Employment
3	Offices, research& development employment	Employment
4	Retail employment	Employment
5	School employment	Employment
6	Household income (rich)	Income
7	Household income (above average)	Income
8	Household income (below average)	Income
9	Household income (poor)	Income
10	Students	Income
11	Individual housing	Real estate
12	Apartment Housing	Real estate
13	Land for economic activities	Employment
14	Land for shops in urban area	Employment
15	Social housing	Real estate
16	University	Employment
17	Retail employment (less frequent)	Real estate
18	Supermarket employment	Real estate
19	Retired income (rich)	Income
20	Retired income (poor)	Income
21	Other commercial ventures	Employment
22	Other land use	Real estate

Total effect

Tells us the impact of a parameter on the QoI if only and only that parameter is allowed to vary, or is uncertain. (More information in Saltelli *et al.* [3])

P. Dutta¹ E. Arnaud¹ E. Prados¹ M. Saujot² B. Lefèvre²

STEEP, INRIA, Rhône Alpes¹, IDDRI, SciencesPo, Paris²

Methodology

Description of TRANUS land use model.

- Consists of 20 nonlinear equations and inequalities.
- Population divided into economic *sectors* and land divided into geographical *zones*.
- Solution reached when supply and demand of land to the population, equilibrates.

Description of TRANUS Grenoble model, and uncertain parameters

• 22 economic sectors and 225 geographical zones

Uncertain parameters

 $\Psi = [\min^{mn}, \max^{mn}, \delta^{mn}, \bar{\omega}^{mn}, \delta, \theta^n]^\top,$

(a) Demand elasticity δ^{mn} .

(b) Minimum consumption \min^{mn}

(d) Demand substitution elasticity $\bar{\omega}^{mn}$. (e) Penalty parameter δ . Figure 2: Total effect when only certain type of variable is uncertain

(f) Utility level θ^n

Conclusions

While estimating the parameters, at least calibrate the variables that have significant impact towards QoI .

References

- [1] T. de la Barra, B. Pérez, and N. Vera. Tranus-j: putting large models into small computers. Environment and Planning B: Planning and Design, 11(1):87-101, 1984.
- [2] P. Dutta, M. Saujot, E. Arnaud, B. Lefévre, and E. Prados. Uncertainty propagation and sensitivity analysis during calibration of an integrated land use and transport model. In Proceedings of the 32^{nd} International Conference on Urban, Regional Planning and Transportation, Amsterdam, volume 65.

Figure 3: TRANUS Grenoble model.

