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1 Introduction

Energy consumption in the residential sector accounts for a significant propor-
tion of national usage. For example, in Ireland this sector accounted for 32%
of total electricity usage in 2008, and over 44% of thermal energy usage [1].
The electricity demand in this sector is expected to increase significantly in the
coming years due to the influx of plug-in electric vehicles (PEVs) [2].

A number of methods have been proposed to improve the energy efficiency
of homes, or enable the user to improve their energy efficiency, such as smart
metering and better building insulation. The pricing strategy used by the utility
can also affect user behavior. In particular, time-variable tariffs such as Time-
of-Use Pricing (TOUP) and Real Time Pricing (RTP) encourage load shifting
on the part of the user from peak to off-peak times.

TOUP is a fixed strategy where cheaper rates are charged for expected off-
peak times (e.g. during the night) and higher rates are charged for expected
peak times (e.g. 17:00-19:00). RTP charges the user at a rate based on the
actual market price at that time. However, it is often impractical for the user to
manage their energy usage in reaction to constantly changing price information.

A Home Energy Management System (HEMS ) is an energy efficiency tool
which can be used to address this issue, automating energy usage of certain home
appliances with respect to time-varying prices. The HEMS provides set points
for the controllable energy consumers in a home over a fixed horizon, subject to
certain constraints.

Optimization of energy usage in the home can then be mutually beneficial to
the homeowner, the electricity provider, and the environment. The homeowners
benefit by a reduction in their electricity costs through optimization of energy
usage where applicable. The flexible energy users in the home which we consider
in our problem are the heating system; the charging of an electric vehicle; and
schedulable appliances (e.g. washing machine / dishwasher).

Although reductions in an individual homeowner’s energy usage will have
little bearing on the network load, the aggregated use of such optimization tools
across homes can result in a large reduction in the peak energy usage. This
is beneficial to both the electricity companies and to the environment as large-



scale, carbon-intensive, generators are required less, and investment in new fossil
fuel based generators can be postponed or even avoided.

2 Problem Description

The HEMS problem can be simply stated as follows: given a price forecast
over a fixed horizon discretized into N time intervals (e.g. 15/30 minutes),
t = {1, . . . , N}, minimize the electricity cost of the home while maximizing
the user comfort. This involves scheduling the following three components: heat-
ing/cooling of the home in each time interval, charging/discharging of the EV
battery in each available time interval, and the start time for the schedula-
ble appliances (dishwasher, washing machine, etc.). These are scheduled subject
to the electricity price per time interval and user preferences; e.g. the ambient
temperature in the home should be 21◦C from 18:00-23:00, the EV battery state-
of-charge (SOC) should be 80% at 08:00, the washing machine should start at
21:00.

Fig. 2. HEMS Overview
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Fig. 1: Home Energy Management System

The EV requirement is considered to be a hard constraint, provided it is
physically possible to charge the battery from the SOC upon arrival to the
requested departure SOC. The user requirements for temperature and appliance
start time are incorporated into a user comfort function of the form:

a ∗max(0, xactual − xuser) + b ∗max(0, xuser − xactual)

where x refers to the temperature / appliance starting time, and a/b are fixed
constants depending on whether the temperature set point is below/above the
user preference or the appliance is scheduled to start earlier/later than the user
preference. We model the HEMS problem as a Mixed Integer Programming
(MIP) problem.



3 Price Tariff Comparison

We investigated the behavior of our algorithm under different pricing schemes.
In particular, we assessed the savings possible with real-time price data from a
number of energy markets in Europe [3–5] and North America [6, 7], and similarly
TOUP data from a number of European and North American utilities [8–11]. We
do not currently consider combining real time prices with an inclining block rate,
as performed in [12], where the price is a function both of the real time price and
the user’s energy usage in the time period. For each location, we gathered price
and weather ([13]) data for four winter weekdays which, although a relatively
small sample, was sufficient to illustrate the points of interest. The standard
MIP solver CPLEX 12.2 [14] was used to find the optimal solution for each day.

Simulations were performed investigating savings achievable compared to a
baseline where no price information is considered when scheduling the compo-
nents. Our results revealed a number of interesting points, due to space re-
strictions we merely summarize these here (further details can be found in the
accompanying slides).

Firstly both RTP and TOUP often lead to considerable daily savings, with
the results for TOUP being more consistent. The lack of savings with RTP for
the Swedish and Canadian markets (a similar result was observed in [15]) can be
explained by a lack of variance in the price across each 24 hour period. Indeed
we found a high correlation between the daily savings and the ratio of minimum
to maximum price over the day.

The range in daily RTPs was insufficient in certain cases to overcome the
tradeoff in shifting an energy consumer to a cheaper time interval with larger
energy losses. For example, to ensure that the ambient temperature is at the
required level at the specified time, pre-heating the home in cheaper periods
will require more energy to account for subsequent heat losses. This will only
be viable if there is a sufficient price differential between the time periods, as
illustrated in Figure 2 for heating and for charging/discharging the EV battery.

Secondly, since RTP data is not known in advance, we tested three forecasts
for the Irish market over 40 days of data. The results showed that significant
daily savings of 20-24% on average can still be achieved when using forecasts,
compared to 29% if the actual price was known in advance. Finally, we tested
the impact of V2G capabilities on the same set of data with both RTP and
forecasts. Our findings were that this capability accounted for over 5% of daily
savings when RTP was used, but only a maximum of 2% when forecasts were
used.

4 Conclusions

In this work, we have investigated the impact of price tariffs when automating the
energy usage in the home. Our comparison of real time market price with time-
of-use price tariffs revealed that TOUP tariffs were more consistent in providing
savings to the user. For some markets the daily variation in the real time prices
was too small to warrant load shifting due to energy losses incurred.
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Fig. 2: Temperature and EV state of charge, optimized for Irish RTP data. Av-
erage daily savings due to HVAC accounted for 48.4% (e0.68) of total daily
savings, similarly smart charging of EV accounted for 42.4% (e0.59 of daily
savings.
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