

Why Sensing

For Truth

- Collect evidence of important environmental phenomena that are not easily observable / quantifiable.
 - How hot is it out there?
 - How polluted are the air and the waterways?
 - How much emissions were created by X corporation?
- Evidence before policy.

Health Impact of Air Pollution

Deaths from urban air pollution

Story of Air Pollution

Why Mass-Sensing

- Air pollution varies in space and time
 - A single station is not sufficient for analyzing exposure
 - A mass deployment is required for detailed picture
- Results may be used for:
 - Everyday decisions
 - Health warnings
 - Exposure studies
 - Emission monitoring

Planned vs. Community Sensing

Centrally Allocated,
Top Down

Grass-root participatory,
Bottom Up

Community Sensing

 A community of agents (sensors) making measurements and report values to a center

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Community Sensing

 The center aggregates agent measurements, integrate them to an model, and publishes a pollution map as a public service

Community Sensing Challenges

Supply:

- Each agent (sensor) needs to be compensated for their investment and maintenance
 - Accuracy may degrade without adequate maintenance

Demand:

- The center needs the agents to continuously report reliable measurements
- The center has no direct control. It can't tell the agents:
 - Where to go
 - Report what they really think or measured

Incentive Schemes

Needed:

- An incentive-compatible mechanism that facilitates good reporting policy:
 - Continuous reporting of good measurements.

Rewards:

- Monetary: compensate sensors for providing measurements
- Reputation: exclude sensors that provide wrong measurements (maliciously or otherwise)

A Game Theoretic Setting

At a given time and location:

- the center publishes statistics for a public prior probability R(v) that the pollution level is v.
- Agents adopt R(v) as their prior expectation Pr(v).
- After observing measurement o, the agent has an updated private posterior $Pr_{o}(v)$.

First Mechanism

- Mechanism with Proper Scoring Rules [Savage, 1971;
 Papakonstantinou, Rogers, Gerding and Jennings 2011]
 - Agent report the posterior distribution Pr_o to the center
 - The center evaluates it with the observed the ground truth g and computes the actual reward:
 - $P(Pr_o, g) = a + b * S(Pr_o, g)$
- Incentive Compatible: highest expected payoff comes from reporting true private beliefs.

Example with Scoring Rule

- Common Prior: L=0.1, M=0.5, H=0.4
- Quadratic Scoring Rule:

$$pay(\bar{x}, p) = a + b \left(2p(\bar{x}) - \sum_{v} p(v)^2 \right)$$

- Agent Posterior: L=0.1, M=0.8, H=0.1
- Payment for ground truth=M:

$$- a + b * (2*0.8 - (0.1^2 + 0.8^2 + 0.1^2))$$

Expected Payment

- a + b *
$$(0.1*(2*0.1 - (0.1^2+0.8^2+0.1^2))$$

+ $0.8*(2*0.8 - (0.1^2+0.8^2+0.1^2))$
+ $0.1*(2*0.1 - (0.1^2+0.8^2+0.1^2)))$
= a + $0.66*$ b

 For non-truthful report L=0.1, M=0.3, H=0.6, Expected Payment = a + 0.15 * b

Problems with Applying Scoring Rules

- Ground truth is required to evaluate the agent's report
 - Sensors measuring at exactly the same place and the same time.
- Agent would require to submit its full posterior distribution
 - Problematic if the posterior cannot be nicely described (needed likelihood for every possible value)

Overcoming Lack of Ground Truth

- Solution: based on peer prediction [Miller, 2005]
 - Substitute ground truth with peer reports
 - Truthful reporting becomes a Nash-equilibrium
 - If all others report truthfully, best strategy is to report truthfully

Evaluating Sensing Reports

- Poll Mechanism: substitute ground truth with a stochastically relevant signal
 - An integrated environmental model that computes an unbiased estimate from other agents' reports and physical knowledge
 - Agents make inference based on their belief of the model outcome
 - Assumption: when there are sufficient reports, the model output is an unbiased estimator of the ground truth.

A New Incentive Scheme

- Pr = Agent belief of the model estimation
- Assumption: the agent believes in his measurement fitting the model:
 - $Pr_o(o) / Pr(o) > Pr_o(o') / Pr(o')$ for all o' != o.

A New Incentive Scheme

- Poll Mechanism
 - Once report s is submitted, the center computes an unbiased estimate m, and reward the agent with payment function according to the public prior R.

$$P = a + b * T(s,m,R)$$
:

- T(s,m,R) = 1 / R(s) if s = m;
- T(s,m,R) = 0 otherwise.

Why it works

- Suppose agent measures v:
 - Expect payment for reporting v:

$$= a + b * Pr_o(v) / R(v)$$

- By assumption:
 - $Pr_o(o) / Pr(o) > Pr_o(v) / Pr(v)$ for all v != o
- Truthful reporting has the highest expected payoff.
- No other assumption about the posterior is required.

Example with Poll Mechanism

- Common Prior: L=0.1, M=0.5, H=0.4
- Agent Posterior: L=0.1, M=0.8, H=0.1
- Payment Function:
 - P(s,m,R) = a + b / R(s) if s=m= a otherwise.
- Expected Payment:
 - -L: a + b * 0.1 / 0.1 = a + b
 - M: a + b * 0.8 / 0.5 = a + 1.6*b
 - -H: a + b * 0.1 / 0.4 = a + 0.25*b

Summary

- Community sensing needs good incentive schemes
- A practical, incentive compatible mechanism for community sensing
- Further work is needed to handle collusion, handling large external incentives, etc.