

Previous Study [Golovin et al. '11]

Select a reserve of maximum persistence probability, subject to a budget constraint:

 $\max_{R} f(R) \text{ s.t. } c(R) \le B \quad (1)$

f is **submodular** => We can find a **near-optimal solution**.

Theorem [Sviridenko '04]: We can efficiently obtain reserve R such that

 $f(R) \ge (1 - 1/e) \max_{R': c(R') \le B} f(R')$

A Tool for Decision Support in Dynamic Conservation Management

Ilija Bogunovic

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Andreas Krause

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Reserve Recommendation Problem Decision Support Tool How to Recommend Different Near-Optimal Reserves? **Expected Number of Surviving Species / Reserve** Similarity The previous approach produces a single near-optimal solution. Best-20 Reserves 0.9 Best-20 Reserves × Greedy Reserve Finding only one solution leaves the conservation management Similar ²⁰ community without possibility to explore alternatives! **The Best-K algorithm** - A randomized variant of the greedy Sim. \rightarrow 1 S 0.5 algorithm that allows users to explore a diverse set of $L \rightarrow \infty$ Ve alternatives. Solves (1). Se Re Sim. $\rightarrow 0$ $L = 0 \implies$ The Best-K Algorithm

How diverse are our recommendations?

Sarah J. Converse

Conservation managers can explore their decision in the space of possible recommendations.

Allows interactive optimization in (near-) real-time.

Recommendations in just a few seconds per optimization problem instance.

Incorporates the **Greedy** and the **Best-K** algorithm.

