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Modeling species distributions
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Estimating a probability distribution

Given:
• Map divided into cells
• Environmental variables, with values in each cell
• Occurrence points: samples from an unknown distribution

Our task is to estimate the unknown probability distribution

Note:
• The distribution sums to 1 over the whole map
• Different from estimating probability of presence
• Pr(t|y=1) instead of Pr(y=1|x) (t=cell, y=response, x=environ)
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The Maximum Entropy Method

Origins: Jaynes 1957, statistical mechanics

Recent use: 

machine learning, eg. automatic language translation

macroecology: SAD, SAR (Harte et al. 2009)

To estimate an unknown distribution:

1. Determine what you know (constraints)

2. Among distributions satisfying constraints:

Output the one with maximum entropy
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More entropy :  more spread out, closer to uniform distribution

2nd law of thermodynamics:

- Without external influences, a system moves to increase entropy

Maximum entropy method: 

- Apply constraints to remove external influences

- Species spreads out to fill areas with suitable conditions

Entropy
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Using Maxent for Species Distributions

“Features”

“Constraints”

“Regularization”

Free software: 
www.cs.princeton.edu/~schapire/maxent/
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find distribution such that
for all features f: mean(f) = sample average of f
find distribution of maximum entropy such that
for all features f: mean(f) = sample average of f

Features impose constraints

temperature
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sample average

Feature = environmental variable, or function thereof
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Features

1

0

Environmental variable

1

0

Environmental variable

Environmental variables or simple functions thereof.

Maxent software has these classes of features (others are possible):

1. Linear … variable itself
2. Quadratic … square of variable
3. Product … product of two variables
4. Binary (indicator) …        membership in a category

5. Threshold …

6. Hinge …
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Each feature type imposes constraints on output 
distribution

Linear features … mean

Quadratic features … variance

Product features … covariance

Threshold features … proportion above threshold

Hinge features … mean above threshold

Binary features (categorical) … proportion in each category

Constraints
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confidence region

Regularization

temperature
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sample average
true mean

find distribution of maximum entropy such that
Mean(f) in confidence region of sample average of f
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The Maxent distribution

Z is a scaling factor so distribution sums to 1

fj   is the j’th feature

λj  is a coefficient, calculated by the program

… is always a Gibbs distribution:

qλ(x)  =  exp(Σj λjfj(x)) / Z
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Maxent is penalized maximum likelihood

Maxent maximizes regularized likelihood:

LogLikelihood(qλ) - Σj βj|λj|

where βj is the width of the confidence interval for fj

Similar to Akaike Information Criterion (AIC), lasso.

Log likelihood:

LogLikelihood(qλ)  =  1/m Σi ln(qλ(xi))

where x1 … xm are the occurrence points.
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Performance guarantees

If true mean lies in confidence region then for best Gibbs qλ:

β

Maxent software: β tuned on a reference data set
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Estimating probability of presence

• Prevalence: Number of sites where the species is present, 
or sum of probability of presence

• Prevalence not identifiable from occurrence data (Ward et al. 
2009)
– Example:  sparrow and sparrow-hawk
– Both have same range map
– Both have same geographic distribution of occurrences
– Hawk is rarer within its range: lower prevalence

• Probability of presence & prevalence depend on sampling:
– Site size
– Observation time
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Logistic output format
• Minimax: maximize 

performance for worst-case 
prevalence

• Exponential → logistic model
– Offset term: entropy

• Scaled so “typical” presences 
have value 0.5
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Response 
curves

• How does probability of presence 
depend on each variable?

• Simple features → simpler model
• Complex features → complex model

• Linear + quadratic (top)
• Threshold features (middle)
• All feature types (bottom)
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Effect of regularization:  multiplier = 0.2

Smaller confidence
Intervals

Lower entropy

Less spread-out
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Effect of regularization: over-fitting

Regularization multiplier = 1.0
(not over-fit)

Regularization multiplier = 0.2
(clearly over-fit)
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The dangers of bias

• Virtual species in Ontario, Canada
– prefers mid-range of all climatic variables
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Boosted regression tree model: biased p/a data

Presence-absence model recovers species distribution
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Model from biased occurrence data

Model recovers sampling bias, not species distribution
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Correcting bias:  golden-crowned kinglet

Maxent model from biased occurrence data

AUC=0.3
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Correcting bias with target-group background

Infer sampling distribution from other species’ records
– “Target group”, collected by same methods

AUC=0.8
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Aligning Conservation 
Priorities Across Taxa in 
Madagascar with High-

Resolution Planning 
Tools

C. Kremen, A. Cameron et 
al. 

Science 320, 222 (2008)
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Madagascar:  Opportunity Knocks

2002: 1.7 million ha = 2.9%

2003 Durban Vision: 6 million ha = 10%

2006:  3.88 million ha  = 6.3%

?

?

?

?

?

?

?
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Study outline

• Gather biodiversity data
• 2315 species: lemurs, frogs, geckos, ants, butterflies, plants
• Presences only, limited data, sampling biases

• Model species distributions: Maxent

• New reserve selection software: Zonation
• 1 km2 resolution for entire country                
• > 700,000 units
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Mystrium mysticum, dracula ant
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Adansonia grandidieri, Grandidier’s baobab
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Uroplatus fimbriatus, common leaf-tailed gecko
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Indri indri
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Propithecus diadema, diademed sifaka
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IndriDracula antGrandidier’s baobab
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10 to 15%

TOP 5%
5 to 10%

Multi-taxon 

Solutions

Ideal = unconstrained
optimized

Starting from PA system:
Constrained, optimized
Includes temporary areas
through 2006
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Spare slides
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The fact that a certain probability distribution maximizes entropy 
subject to certain constraints representing our incomplete 
information, is the fundamental property which justifies the use of 
that distribution for inference; it agrees with everything that is 
known but carefully avoids assuming anything that is not known 
(Jaynes, 1990).

Maximum Entropy Principle
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Maximizing “gain”

Maxent maximizes regularized gain:

Gain(qλ) - Σj βj|λj|

Unregularized gain:

Gain(qλ)  =  Log likelihood - ln(1/n)

E.g. if UGain=1.5, then average training sample is 
exp(1.5) (about 4.5) times more likely than a random 
background pixel
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Maxent algorithms

The gain is convex:
• Variety of algorithms: gradient 

descent, conjugate gradient, 
Newton, iterative scaling

• Our algorithm: coordinate 
descent

Goal: maximize the regularized gain
Algorithm: 

Start with uniform distribution (gain=0)
Iteratively update λ to increase the gain
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Interpretation of regularization
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Conditional vs unconditional Maxent
One class:
• Distribution over sites:  p(x|y=1)

• Maximize entropy: - Σp(x|y=1) ln(p(x|y=1))

Multiclass:
• Conditional probability of presence:  Pr(y|z)
• Maximize conditional entropy: - Σp’(z) p(y|z) ln(p(y|z))

Notation:  
• y    0 or 1, species presence
• x    a site in our study region
• z a vector of environmental conditions
• p’(z)    the empirical probability of z
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Effect of regularization:  multiplier = 5

Larger confidence
Intervals

Higher entropy

More spread-out
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Sample selection bias in Ontario birds
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Performance guarantees

Solution SOL returned by Maxent is almost as 
good as the best qλ

Guarantees should depend on
number of samples m
number of features n (or “complexity” of features)
“complexity” of the best qλ

relative entropy
(KL divergence)
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