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Barroom Messages

All data are not created equal.

Computational methods for one 
discipline cannot necessarily be 
transferred to another. 



Presentation Focus

Consequences of ecological data and 
inference methods for selection of 
computational approaches. 



Outline
How to monitor?

Spatial variation
Detection probability
Example: occupancy modeling

Why monitor?
Science: stochastic dynamic optimization for learning
Management: stochastic dynamic optimization for making smart 
decisions

What to monitor?
Selection of system components to provide information about entire 
system

Attractor-based methods
Information-theoretic methods

Summary



How to Monitor?
Basic Sampling Issues

Geographic variation
Frequently counts/observations cannot be 
conducted over entire area of interest
Proper inference requires a spatial sampling 
design that:

Permits inference about entire area, based on a sample, 
and/or
Provides good opportunity for discriminating among 
competing hypotheses



How to Monitor?
Basic Sampling Issues

Detectability
Counts represent some unknown fraction of 
animals in sampled area 
Proper inference requires information on 
detection probability



Detectability: Monitoring Based  
on Some Sort of Count

Ungulates seen while walking a line transect
Tigers detected with camera-traps
Birds heard at point count
Small mammals captured on trapping grid
Bobwhite quail harvested during hunting season
Kangaroos observed while flying aerial transect
Number of locations at which a species is 
detected



Detectability: Conceptual Basis

N = abundance 
C = count statistic
p = detection probability; P(member of N
appears in C) 
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Detectability: Inference

Inferences about N (and relative N) 
require inferences about p
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Inference from Ecological 
Data

WYSIWYG
(What You See Is What You Get)

Doesn’t Work in Ecology



Inference Example: Species 
Distribution and Habitat 

Relationships
Basic field situation: single season

From a population of S sampling units, s are 
selected and surveyed for the species.
Units are closed to changes in occupancy 
during a common ‘season’.
Units must be repeatedly surveyed within a 
season.



Single Season: Data
Obtain detection history data for each site 
visited
Possible detection histories, 3-visits:

101   000
Key issue for inference: ambiguity of 000
(1) absence or 
(2) presence with nondetection 



Single Season Model

Consider the data as consisting of 2 ‘layers’
1. True presence/absence of the species.
2. Observed data, conditional upon species 

distribution.

Knowledge about the first layer is imperfect.

Must account for the observation process to 
make reliable inferences about occurrence. 



Model Development
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Single Season Model Parameters

ψ = probability a unit is occupied.

pj = probability species is detected at a 
unit in survey j (given presence).



Single Season Modeling

Basic idea: develop probabilistic model for 
process that generated the data
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Single Season Model: Inference

Given:
(1) detection history data for each site, 
(2) probabilistic model for each detection history

Inference:
Maximum likelihood
State space approach (e.g., hierarchical Bayes implemented 
using MCMC)

Relevance to computations using estimates:
Estimates (e.g., of occupancy) have non-negligible variances 
and covariances
Typically, cov 0)ˆ,ˆ( 1 ≠+tt ψψ



Detection Probability and 
Occupancy: Why Bother?

Methods that ignore p<1 produce:
Negative bias in occupancy estimates
Positive bias in estimates of local extinction
Biased estimates of local colonization
Biased estimates of incidence functions and 
derived parameters
Misleading inferences about covariate 
relationships 



Habitat Relationships and 
Resource Selection

True relationship

Apparent relationship 
when p<1 and 

constant
p<1 and +ve covaries 

with habitat

p<1 and -ve covaries 
with habitat



Inference Example: Species 
Distribution & Habitat Relationships

Geographic variation and detection probability 
are not statistical fine points
They must be dealt with for proper inference
Proper inference methods yield estimates (e.g., 
of occupancy) that have non-negligible variances 
and covariances
Computational algorithms (e.g., for dynamic 
optimization) that use such estimates must deal 
with this variance-covariance structure resulting 
from ecological sampling 



Why Monitor?

Monitoring is not a stand-alone activity but is 
most useful as a component of a larger program 
(1) Science

Understand ecological systems
Learn stuff

(2) Management/Conservation
Apply decision-theoretic approaches
Make smart  decisions



Key Step of Science: 
Confront Predictions with Data
Deduce predictions from hypotheses
Observe system dynamics via monitoring
Confrontation: Predictions vs. 
Observations

Ask whether observations correspond to 
predictions (single-hypothesis) 
Use correspondence between observations 
and predictions to help discriminate among 
hypotheses (multiple-hypothesis)



Single-Hypothesis Approach to 
Science 

Develop hypothesis
Use model to deduce testable prediction(s), 
typically relative to a null hypothesis
Carry out suitable test
Compare test results with predictions (confront 
model with data) 
Reject or retain hypothesis



Multiple-Hypothesis Approach 
to Science  

Develop set of competing hypotheses
Develop/derive prior probabilities associated 
with these hypotheses
Use associated models to deduce predictions
Carry out suitable test
Compare test results with predictions
Based on comparison, compute new 
probabilities for the hypotheses



Single Hypothesis Science & 
Statistics: Historical Note

Much of modern experimental statistics seems to have been 
heavily influenced by single-hypothesis view of science
Fisherian experimental design

Emphasis on expectations under H0 (replication, randomization, 
control)
Objective function for design: maximize test power within 
hypothesis-testing framework

Result: statistical inference and design methods
Well-developed for:

single-hypothesis approaches
single experiments

Not well-developed for:
multiple hypothesis approaches 
accumulation of knowledge for sequence of experiments



Science and the Accumulation 
of Knowledge

Science has long been viewed as a progressive 
enterprise

“I hoped that each one would publish whatever he 
had learned, so that later investigations could begin 
where the earlier had left off.” (Descartes 1637)

How does knowledge accumulate in single- and 
multiple-hypothesis science? 



Accumulation of Knowledge

No formal mechanism under single hypothesis 
science
Ad hoc approach: develop increased faith in 
hypotheses that withstand repeated efforts to 
falsify 
Popper’s (1959, 1972) “Natural Selection of 
Hypotheses” analogy 

Subject hypotheses to repeated efforts at 
falsification: some survive and some don’t



Accumulation of Knowledge
Mechanism built directly into multiple hypothesis 
approach
Model probabilities updated following each study, 
reflecting changes in relative degrees of faith in 
different models

“Natural Selection of Hypotheses”: view changes in 
model probabilities as analogous to changes in gene 
frequencies

Formal approach under multiple hypothesis science 
based on Bayes’ Theorem



Updating Model Probabilities: 
Bayes’ Formula

pt+1(model i | datat+1) =

pt(model i ) P(datat+1 | model i)

Σ pt(model j ) P(datat+1 | model j)
j
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Study Design Considerations:  
Multiple Hypothesis Science

Envisage a sequence of studies or manipulations
Make design decisions at each time t, 
depending on the information state (model 
probabilities) at time t
When studies are on natural populations, design 
decisions will likely also depend on system state 
(e.g., population size)



Study Design Considerations:  
Multiple Hypothesis Science

Proposal (Kendall): use methods for optimal 
stochastic control (dynamic optimization) to aid 
in aspects of study design (e.g., selection of 
treatments) at each step in the program of 
inquiry
Objective function focuses on information state, 
the vector of probabilities associated with the 
different models



Objective Functions for Learning
Over T Experiments

Maximize sum of squares of posterior model 
probabilities (likelihood)

Same as minimizing Simpson’s index

Minimize Shannon-Wiener index
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Dynamic Optimization:
Computational Issues

Partial observability 
sampling variances and covariances

Problem dimension 
limited number of state variables, 
limited categories for discretizing state 
variables, etc. 



Management/Conservation: 
Key Step in Process

Monitoring provides estimates of system 
state for state-dependent decisions

Dynamic optimization uses these 
estimates, together with objectives, 
available actions and models to yield 
optimal decisions  



Dynamic Optimization: 
Computational Issues

Partial observability 
sampling variances and covariances

Problem dimension 
limited number of state variables, 
limited categories for discretizing state variables, etc.

Order of Markov process
Higher order processes characterize some ecological systems 
(e.g., 10-year maturation time for horseshoe crabs)

Nonstationarity of Markov process 
Climate change
Human activities and associated land-use changes



What to Monitor?

Answer is inherited from answer to 
“Why?” question
Straightforward for small (1-3) number of 
species
What about focus on an ecological system 
with many components (e.g., species x 
location subpopulations)?



What to Monitor in Ecological 
Systems?

We can’t monitor all populations of all 
species everywhere in a large system
How do we select species x location 
components that provide more information 
about system dynamics
Relevant to ideas about “indicator” species 
and locations.



Dynamical Interdependence

Data: time series of 2 (or more) different state 
variables
Question: what can we learn about 1 (or more) 
state variable by following another?
Ecological applications:

Monitoring program design (indicator species, 
indicator locations, etc.)
Population synchrony and its cause(s)
Food web connectance
Competitive interactions



Dynamical Interdependence: 
Nonlinear Systems

Attractor-based methods
If 2 state variables are dependent and belong to 
same system, then by Takens (1981) embedding 
theorem, their attractors should exhibit similar 
geometries
Continuity: focus on function relating 2 attractors

Information-based methods
Mutual information
Transfer entropy



Example Method: Transfer Entropy

Consider a Markov process in which value 
of random variable, Y, at any time 
depends on past values (k time units into 
the past)
Consider another possible system variable, 
Z, and ask whether it contributes 
information about Y
Absence of information flow from Z to Y:   
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Transfer Entropy 
(Schreiber 2000)

Transfer Entropy,         , measures the 
extra information about transitions of Y
obtained by knowing Z
Transfer Entropy is not symmetric
Transfer Entropy is a Kullback entropy that 
focuses on the deviation of the process 
from the generalized Markov property 
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Computational Methods for 
Inference About Dynamical 

Interdependence

Both attractor-based and information-based 
(e.g., transfer entropy) approaches are usually 
computed assuming stationarity and using:

Long time series 
Direct observations with no sampling variances-
covariances

Example, the probability distributions for transfer 
entropy are developed using binning approach  



Computational Methods for 
Inference About Dynamical 

Interdependence
Many of these methods not yet ready for 
ecological prime-time 
Approaches to nonlinear analysis of time series 
that are noisy, nonstationary and short include:

surrogate data sets for bootstrap-type approach to 
inference
kernel density estimation approaches instead of “bin 
counting”  
use of symbolic dynamics 
information-based approaches for deterministic signal 
extraction in the presence of noise



On the Ugliness of Ecological 
Monitoring: Summary

Inference from ecological monitoring data 
requires methods that deal with geog. variation 
& detection probability 

WYSIWYG won’t work!

These inference methods have been well-
developed, but resulting estimates are typically 
few and characterized by sampling variance-
covariance structures



On the Ugliness of Ecological 
Monitoring: Summary

Many ecological processes are also characterized 
by relatively high dimension and dynamics are 
governed by higher order Markov processes

Some algorithms that would be especially useful 
to ecologists (dynamic optimization, attractor-
and information-based approaches to assessing 
coupling) were not designed with such data and 
processes in mind
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