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The reserve design problem is an impor-
tant problem in the sustainability of biodiver-
sity. The general problem consists of selecting
a set of land parcels for conservation to en-
sure species viability. However, biologists have
highlighted the importance of addressing the
negative ecological impacts of habitat fragmen-
tation when selecting parcels for conservation.
To this effect, ways to increase the spatial co-
herence among the set of parcels selected for
conservation have been investigated (see [10]
for a review , [9, 11, 1] ). We look at the prob-
lem of designing wildlife corridors, which con-
sists of selecting land parcels for conservation
in order to connect areas of biological signifi-
cance (e.g. established reserves). Wildlife cor-
ridors are an important conservation method
in that they increase the genetic diversity and
allow for greater mobility (and hence better re-
sponse to predation and stochastic events such
as fire, as well as long term climate change).

Specifically, in the wildlife corridor design
problem, we are given a set of reserves (biolog-
ically significant areas), a set of land parcels
connecting the reserves, and the cost (e.g. land
value) and utility (e.g. habitat suitability) of
each parcel. The goal is to select a subset of
the parcels that forms a connected network
including all reserves. More formally, we are
given a (planar) connected graph G = (V,E)
where the graph nodes correspond to land
parcels, a set of reserves T ⊂ V , a cost function
c : V → R, and a utility function u : V → R.
There are three natural optimization variants.
The budget problem requires that we maxi-
mize total utility of the protected parcels while
the total cost is less than a specified budget.
The quota problem requires minimizing cost
while the total utility of the selected parcels is
greater than a specified quota. Finally, the
prize-collecting problem calls for minimizing
the cost of the set plus the utility of the unpro-
tected parcels (here interpreted as a penalty for
losing these parcels).

In this work, we investigate different mathe-
matical formulations of the budget-constrained
variant of the Corridor problem. Corridor De-

sign is a computationally challenging combi-
natorial problem with connections to graph
problems studied in computer science. The
existence of the budget constraint relates the
Corridor problem to the class of combinatorial
problems involving packing constraints. Re-
moving the connectivity constraint, we have
a 0-1 knapsack problem. On the other hand,
the connectivity constraint relates the Corri-
dor Design Problem to other important classes
of well-studied problems in Computer Science
such as the Traveling Salesman Problem and
the Steiner Tree problem. In particular, there
are two lines of work in Computer Science that
are closely related to the Corridor Problem.

The first one is the work of Moss & Rabani
[8] on the so-called Constrained Node Weighted
Steiner Tree Problem. The classical Steiner
Tree Problem involves a graph G = (V,E), a
set of terminal vertices T ⊂ V , and costs asso-
ciated with edges, while the goal is to select a
subgraph G′ = (V ′ ⊆ V,E′ ⊆ E) that is a tree
and contains all terminals (T ⊆ V ′). Moss
et al., however, are concerned with a graph
with costs and profits associated with nodes
(not edges). The problem concerns choosing a
subset of vertices that forms a connected sub-
graph (or equivalently a tree). The name Con-
strained Node Weighted Steiner Tree Problem
can be quite ambiguous. In the context of all
the Steiner tree variants, we would rather re-
fer to this problem as the Steiner Tree Problem
with Node Profits and Node Costs. It is easy to
see that the Corridor problem falls in this class.
Moss et al. provide results for the special case
where there is either no terminals or only one
terminal - a specified root node. For all three
optimization variants - the budget, quota and
prize-collecting, Moss & Rabani [8] provide an
approximation guarantee of O(log n), where n
is the number of nodes in the graph. How-
ever, for the budget variant, the result is a bi-
criteria approximation, i.e. the cost of the se-
lected parcels can exceed the budget by some
fraction. For really large Corridor instances,
finding optimal solutions would be very diffi-
cult. In such cases, one is interested in having



approximation algorithms with good guaran-
tees. We are interested in extending the re-
sults of Moss et al. to include multiple termi-
nals and to guarantee better approximation ra-
tios by exploiting some of the problem-specific
structure. In particular, the graph in the Cor-
ridor problem captures a set of parcels on land
and hence is a planar graph. Demaine, Haji-
aghayi, & Klein [6] have recently shown that
one can improve the O(log n) approximation
guarantee to a constant factor guarantee when
restricting the class of graphs to planar. How-
ever, their results only concern the minimum
cost Steiner Tree Problem with costs on nodes
(but no profits).

The second related line of work is that of
Costa, Cordeau, & Laporte [3, 4] on the so-
called Steiner Tree Problem with Node Rev-
enues and Budgets. They study the variant
of the Steiner tree problem where in addition
to costs associated with edges, there are also
revenues associated with nodes. The goal is
to select a Steiner tree with total edge cost
satisfying a budget constraint while maximiz-
ing the total node revenue of the selected tree.
The case where we have edge costs can easily
be reduced to the case of node costs by replac-
ing each edge with a new node with the corre-
sponding cost and edges to the endpoints of the
original edge. Hence, the Steiner Tree Prob-
lem with Node Revenues and Budgets is eas-
ier than the budget-constrained Steiner Tree
Problem with Node Profits and Node Costs.
Nevertheless, the work of Costa et al. on the
budget-constrained Steiner Tree Problem with
Node Revenues can provide useful insights into
this more general problem. In particular, their
results on formulations of the connectivity con-
straints are of relevance.

The Wildlife Corridor Design Problem was
studied recently in [2, 7]. The authors desig-
nate one of the reserves (terminals) as a root
node and encode the connectivity constraints
as a single commodity flow from the root to
the selected parcels. This encoding is small
and easy to enforce. As opposed to the Steiner
tree formulation, it does not impose the con-
straint that the set of used edges should form
a tree.

Alternatively, one can use the equivalence
with the Steiner Tree Problem with Node Prof-
its and Node Costs. Encodings of the con-
nectivity requirement successfully applied to
the Steiner Tree problem involve exponential
number of constraints. In particular for the
Steiner Tree Problem with Node Revenues
and Budgets, Costa, Cordeau, & Laporte [4]
suggest using the directed Dantzig-Fulkerson-
Johnson formulation with subtour elimination
constraints enforcing the tree structure of the
selected subgraph [5]. Such exponential encod-
ings cannot be represented explicitly for real

life sized instances. Instead, the problem is
solved using Branch-and-Cut, where a relaxed
master problem omitting the exponential sub-
tour elimination constraints is solved and con-
nectivity constraints are added while solving
using max-flow/min-cut algorithms to quickly
discover connectivity violations.

In our work, we compare the effectiveness
of three different encodings of the connectiv-
ity constraints in the budget-constrained Cor-
ridor Problem: 1) the single-commodity flow
encoding [2]; 2) a multi-commodity flow encod-
ing; 3) a modified directed Dantzig-Fulkerson-
Johnson formulation using node costs. In
multi-commodity flow encoding, the connec-
tivity of each selected parcel to the root node is
established by a separate commodity flow. It
provides a middle ground between the single-
commodity encoding and the exponential en-
coding. Although the multi-commodity flow
encoding of the connectivity requirement is
much larger that the single commodity encod-
ing (yet still polynomial size), it can result in
a stronger LP relaxation of the problem which
results in tighter bounds on the objective func-
tion.
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