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1 Motivations

In this abstract, we describe an open computational sustainability problem that aims at under-
standing, predicting and controlling the spatial spread of knotweeds which exhibit exceptional
invasive capacities.

Biological invasions are increasingly recognized as an important element of global change and
constitute an important factor of loss of biodiversity. Invaders cause impacts on native species
and on ecosystems. Alterations resulting from invasions are often formulated in terms of economic
consequences, and the high costs induced by the spreading of invasive species lead managers and
researchers to seek for efficient methods of eradication. Nevertheless, invasive management has
been proven to be difficult and some species have been demonstrated to resist to control. Under-
standing biological invasions in terms of biological and ecological processes, with an ultimate goal
of controlling, predicting and preventing them, is of great importance.

Our biological model is the species complex of the genus Fallopia (or asian knotweeds, Polygo-
naceae) which is listed by the World Conservation Union as one of the world’s 100 worst invasive
species. Tiny pieces of rhizome or stem are capable of regrowth and are considered as important
dispersal propagules. Clonal spread by rhizomes associated with rapid growth can result in vast
monocultures and consequently has been considered as the major feature of aggressiveness of the
Fallopia complex species. Ecological and biological studies are carried out in the LEHF laboratory
which is specialized in ecology of plant communities. In particular, data were gathered on mor-
phological and demographic traits, reproductive and dispersion traits of the different genotypes
(parental species, interspecific hybrids) for this model Fallopia. Data were collected and will be
collected on the invasibility of different ecosystems. In particular, we know the rate of expansion
of a population of knotweeds as a function of the initial surface of the population in a given habi-
tat. At the landscape scale, different populations can occur in and near different habitats. Those
habitats vary in their properties in facilitating or limiting spread of knotweeds.

In section 2, we introduce a mathematical model of our problem and we discuss how to use
this model for understanding and predicting spatial spread of knotweeds. In section 3, we discuss
optimization issues and show how optimization techniques could help us controlling the spatial
spread of knotweeds.

2 Mathematical model of knotweed spread

The speed of knotweed spread depends on its genotype, but also on its habitat, and a landscape
is composed of different kinds of habitats (e.g., grass, forested area, river, road, etc). Hence, we
propose to use a spatially explicit model such that the landscape is subdivided into a tesselation
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of discrete cells C, as proposed for example in (Marco et al 2002). Each cell i ∈ C is spatially
located and we denote n(i) ⊆ C the set of cells that are neighbours to every cell i ∈ C. Each cell
is associated with a kind of habitat and we denote h(i) the kind of habitat of cell i (we assume
that cells are small enough so that the habitat associated with a cell is homogeneous).

The spread of knotweeds is studied for one year periods. Hence, we associate a variable xi,t

with every cell i ∈ C and every year t. This variable gives the proportion of knotweeds in cell i at
year t. From the collected data, we can model knotweed spread on every cell i ∈ C by means of
a constraint between the variables xi,t+1, xi,t and xj,t for every j ∈ n(i). In other words, we can
define the relation between the proportion of knotweeds in cell i at time t + 1 and the proportions
of knotweeds in cell i and its neighbour cells j ∈ n(i) at time t. This relation depends on the kind
of habitat h(i) of cell i.

This first model may be used to better understand and also to predict spatial spread of
knotweeds: starting from an observed state at time t0 (i.e., the observed proportion of knotweeds
in every cell at time t0), we can propagate constraints to compute the predicted proportions of
knotweeds in every cell at times ti > t0. By comparing these predictions with our collected data,
we shall validate our model (or correct it if differences are observed). A key point lies in the def-
inition of the constraints that model knotweed spread: first observations have shown us that the
invaded area is increasing linearly; however, we have to define this more formally. Also, we have
to study the impact of the geometry of cells (e.g., squares or hexagones) and of the neighborhood
(e.g., 4 or 8 cells for squares) on the progression of the spread (Holland et al 2007)

3 Using optimization techniques to control the spatial spread
of knotweeds

Different methods may be applied to control the spread of knotweeds. For example, knotweed
can be suppressed (but not eradicated) by cutting it back throughout the summer, so that its
photosynthesis is never allowed to operate at high levels. Also, knotweed rhizomes can be dug up
and bagged. The impact of these different methods on the spread of knotweeds is not yet known
exactly, but researchers of the LEHF laboratory are currently studying and measuring them. Each
method also has a different financial cost.

Hence, we could use optimization techniques to better control the spatial spread of knotweeds
at the lowest cost. A decision variable di,t can be associated with every cell i and every year t. The
domain of these variables can be composed of the different actions that may be performed on a cell
i at time t (e.g., cut, dug, ...) including doing nothing. We may consider two different objectives,
i.e., minimize the cost of the decided actions and minimize the spread. As these two objectives
are contradictory, we can either post a constraint on the total cost and search for a solution which
minimizes the spread while satisfying the cost constraint, or we can post a constraint on the spread
and search for a solution which minimizes the cost while satisfying the spread constraint.

By using optimization techniques (and not only simulating the model with respect to a given
initial state and actions), we hope we shall discover good strategies for better controlling spatial
spread at the lowest cost. For example, depending on the topology of the landscape, we may
identify a small number of key cells on which actions should be done first because these cells
constitute a kind of bottleneck between invaded cells and (not yet) invaded cells.
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