
A Family of Resource Constraints for Energy
Cost Aware Scheduling

Helmut Simonis and Tarik Hadzic?

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.simonis,t.hadzic}@4c.ucc.ie

Abstract. We present a family of resource constraints which allow us to
model scheduling problems with time variable resource cost. Our main
use case is energy cost minimization, by avoiding peak electricity usage
periods in the generated schedule. This at the same time helps to bal-
ance the overall demand profile, leading to reduced stress on the national
electricity grid. The proposed constraints extend existing cumulative,
disjunctive and machine choice constraints. We present abstract formu-
lations of the constraints, some efficient models for cost estimation and
describe algorithms for domain pruning based on reduced cost reasoning.

1 Motivation

Time variable electricity tariffs have been introduced in many countries to prop-
erly price the cost of electricity generation over changing demand at differ-
ent times of the day. In Ireland, the All Island Electricity Market (http://
allislandmarket.com) generates a whole-sale market price in half hour time
slots, with prices sometimes varying by a factor of ten between peak and non-
peak periods. The high cost at peak utilization is linked to the use of inefficient,
expensive stand-by generation plant with an increased carbon footprint. Shift-
ing large-scale customer demand away from peak utilization increases stability
of the national grid, and can possibly delay or avoid heavy investment in new
generator capacity.

Figure 1 shows demand and price data for two one week periods in January
and June 2010. We can see that demand varies significantly during the day, but
also from day to day in the week and between seasons. Prices follow the demand,
with especially high prices at periods close to the national dispatch limit.

In Ireland, wind power plays an increasing role as a renewable energy source.
Unfortunately, its integration in the national grid is problematic, due to the
relative isolation of the Irish electricity grid, and wind energy’s time variable,
and only partially known, supply level. Matching electricity use to changes in
wind energy supply is quite difficult to imagine for domestic usage, but can
be possible for industrial users, given the right pricing incentive. Widespread

? This work was supported by Science Foundation Ireland (Grant Numbers 05/IN/I886
and 05/IN.1/I886 TIDA 09).

{h.simonis,t.hadzic}@4c.ucc.ie
http://allislandmarket.com
http://allislandmarket.com


Demand Price

Fig. 1. Electricity Demand and Price, ROI, Comparing January and June data

adaption of electric cars is seen as another way of fully utilizing the wind energy
potential, but this is still years in the future.

The current adaption of time variable tariffs for large scale electricity users
is still quite limited. This is partially due to the cost of the required smart
metering tools and the necessary detailed understanding of electrical usage over
short time periods, but also due to a lack of decision support tools which allow
the exploitation of time variable tariffs to reduce costs. We are trying to fill this
gap using constraint programming.

Our current work is therefore focused on the problem of solving industrial
scheduling problems considering time variable energy cost, and using available
renewable energy in the most efficient way. This requires agile scheduling tools,
which can react quickly to changes in prices, while still considering other opti-
mization criteria like product quality, factory throughput and just-in-time pro-
duction.

Constraint Programming has been a very successful tool in solving large
scale industrial scheduling problems [2,9,10], creating flexible scheduling tools
for industries in many domains. Its main advantage over competing technologies
is the ease of adapting a system to a changing environment, and the potential to
incorporate user-defined strategies and heuristics besides powerful mathematical
reasoning techniques.

So far our work [7,8,6] has centered on finding lower bounds on the energy
cost for a cumulative schedule. We have defined and compared multiple models
and algorithms which can predict the energy cost of a partially defined schedule.
The best results use an adaptation of the Linear Programming model for the
cumulative constraint from [4]. Experimental results indicate that very good es-
timates (better than 98% of the optimal value) can be achieved. Obtaining the
lower bounds was a required first step in defining constraint filtering rules which
remove infeasible values from consideration during search. In this paper we de-
scribe these methods for a family of global constraints which combine energy cost



considerations with other scheduling concepts for single or multiple machines, or
overall, cumulative resource consumption in a factory. At the same time, we are
considering scheduling strategies which can help to find good schedules quickly,
without exploring a very large search space completely.

Our current methods are focused on industrial scheduling problems for large
scale electricity consumers in manufacturing and other industries. But the under-
lying technology is also applicable in other areas of significant electricity usage
like HVAC (heating/ventilation/air-conditioning) for buildings, or cooling sys-
tems in the food industry or for data centres. These are domains where there
also is significant overlap with other projects at our institute (4C), and existing
collaboration within UCC and with industrial partners.

2 Constraints Family

We consider four variants of the energy cost aware scheduling constraints:

CumulativeCost The total energy consumption is limited by a hard limit, and
each task consumes a fixed amount of energy during its execution. The cost
is the total cost of energy consumed over time, priced at different levels.

DisjunctiveCost This constraint models a disjunctive machine, where tasks
consume different amounts of energy. The order of the tasks on the machine
will therefore affect total energy cost.

ParallelMachineCost This considers multiple disjunctive machines, which all
contribute to an overall energy limit. Tasks are fixed on their machine, only
the order of the tasks can be affected.

MachineChoiceCost We consider multiple disjunctive machines with an over-
all energy use limit. Tasks can move between machines, with possibly differ-
ent duration and resource use on every machine.

We now discuss each of the possible constraints in more detail.

2.1 CumulativeCost

We start with the CumulativeCost constraint, which looks at the overall en-
ergy consumption of a set of tasks over time. It is an extension of the classical
cumulative constraint [1]

Cumulative([s1, s2, ...sn], [d1, d2, ...dn], [r1, r2, ...rn], l, p),

describing n tasks with start si, fixed duration di and resource use ri, with an
overall resource limit l and a scheduling period end p. Our new constraint is
denoted as

CumulativeCost(Areas, Tasks, l, p, cost).

The Areas argument is a collection of q areas {A1, . . . , Aq}, which do not overlap
and partition the entire available resource area [0, p] × [0, l]. Each area Aj has
a fixed position xj , yj , fixed width wj and height hj , and fixed per-unit cost



cj . Consider the example in Fig. 2 (left). It has 5 areas, each of width 1 and
height 3. Our definition allows that an area Aj could start above the bottom
level (yj > 0). This reflects the fact that the unit-cost does not only depend
on the time of resource consumption but also on its volume. In our electricity
example, in some environments, a limited amount of renewable energy may be
available at low marginal cost, generated by wind-power or reclaimed process
heat. Depending on the tariff, the electricity price may also be linked to the
current consumption, enforcing higher values if an agreed limit is exceeded.

We choose the numbering of the areas so that they are ordered by non-
decreasing cost (i ≤ j ⇒ ci ≤ cj); in our example costs are 0, 1, 2, 3, 4. There
could be more than one area defined over the same time slot t (possibly spanning
over other time-slots as well). If that is the case, we require that the area ”above”
has a higher cost. The electricity consumed over a certain volume threshold might
cost more.

The Tasks argument is a collection of n tasks. Each task Ti is described by
its start si (between its earliest start si and latest start si), and fixed duration
di and resource use ri. In our example, we have three tasks with durations
1, 2, 1 and resource use 2, 2, 3. The initial start times are s1 ∈ [2, 5], s2 ∈ [1, 5],
s3 ∈ [0, 5]. For a given task allocation, variable aj states how many resource
units of area Aj are used. For the optimal solution in our example we have
a1 = 2, a2 = 3, a3 = 2, a4 = 0, a5 = 2. Finally, we can define our constraint:

Definition 1. Constraint CumulativeCost expresses the following relationships:

∀ 0 ≤ t < p : prt :=
∑

{i|si≤t<si+di}

ri ≤ l (1)

∀ 1 ≤ i ≤ n : 0 ≤ si ≤ si < si + di ≤ si + di ≤ p (2)

ov(t, prt, Aj) :=

{
max(0,min(yj + hj , prt)− yj) xj ≤ t < xj + wj

0 otherwise
(3)

∀ 1 ≤ j ≤ q : aj =
∑

0≤t<p

ov(t, prt, Aj) (4)

cost =

q∑
j=1

ajcj (5)

For each time point t we first define the resource profile prt (the amount of re-
source consumed at time t). That profile must be below the overall resource limit
l, as in the standard cumulative. The term ov(t, prt, Aj) denotes the intersection
of the profile at time t with area Aj , and the sum of all such intersections is the
total resource usage aj . The cost is computed by weighting each intersection aj
with the per-unit cost cj of the area.

Note that our constraint is a strict generalization of the standard cumulative.
Since enforcing generalized arc consistency (GAC) for Cumulative is NP-hard
[4], the complexity of enforcing GAC over CumulativeCost is NP-hard as well.



Fig. 2. An example with 3 tasks and 5 areas. Areas are drawn as rounded
rectangles at the top, the tasks to be placed below, each with a line indicating
its earliest start and latest end. The optimal placement of tasks has cost 15 (left).
The LP model produces a lower bound 12 (right).

Problem and Optimal Solution LP Solution

1

2

1

2

3

1

4

5

1

3

4

1

0

1

1

3

← j

← cj

← aj

cost = 15

2 5

2

1

t1

1 5

2

2

t2

0 5

3

1

t3

23 2 02

1

2

1

2

3

1

4

5

1

3

4

1

0

1

1

3

← j

← cj

← aj

lb = 12
33 1 11

In [8] we considered different algorithms to compute a lower bound on the
resource cost of the CumulativeCost constraint. The best model was based on
[4], which describes an LP relaxation of the classical cumulative constraint. We
extend this model to handle the cost component directly (equations (6)-(15)).

We introduce binary variables yit which state whether task i starts at time
t. For each task, exactly one of these variables will be one (constraint (12)).
Equations (11) connect the si and yit variables. Continuous variables prt describe
the resource profile at each time point t, all values must be below the resource
limit l. The profile is used in two ways: In (13), the profile is built by cumulating
all active tasks at each time-point. In (14), the profile overlaps all areas active
at a time-point, where the contribution of area j at time-point t is called zjt (a
continuous variable ranging between zero and hj). Adding all contributions of an
area leads to the resource use aj for area j. This model combines the start-time
based model of the cumulative with a standard LP formulation of the convex,
piece-wise linear cost of the resource profile at each time point. Note that this
model relies on the objective function to fill up cheaper areas to capacity before
using more expensive ones. Enforcing the integrality in (8) leads to a mixed
integer programming model DMIP, relaxing the integrality constraint leads to
the LP model DLP. The MIP model solves the cumulative-cost constraint to
optimality, thus providing an exact bound for the constraint. We can ignore the



actual solution if we want to use the constraint in a larger constraint problem.

lb = min

q∑
j=1

ajcj (6)

∀ 0 ≤ t < p : prt ∈ [0, l] (7)

∀ 1 ≤ i ≤ n, 0 ≤ t < p : yit ∈ {0, 1} (8)

∀ 1 ≤ j ≤ q,∀ xj ≤ t < xj + wj : zjt ∈ [0, hj ] (9)

∀ 1 ≤ j ≤ q : 0 ≤ aj ≤ aj ≤ aj ≤ wjhj (10)

∀ 1 ≤ i ≤ n : si =

p−1∑
t=0

tyit (11)

∀ 1 ≤ i ≤ n :

p−1∑
t=0

yit = 1 (12)

∀ 0 ≤ t < p : prt =
∑

1≤i≤n

∑
t′≤t<t′+di

yit′ri (13)

∀ 0 ≤ t < p : prt =

q∑
j=1

zjt (14)

∀ 1 ≤ j ≤ q : aj =

xj+wj−1∑
t=xj

zjt (15)

2.2 DisjunctiveCost

The DisjunctiveCost constraint is the analog generalization of the disjunctive
constraint, which allows one task run be run on a machine at any time. Given
the areas and tasks as defined before, we can describe the constraint by adding

∀ i, j|i 6= j : si + di ≤ sj ∨ sj + dj ≤ si (16)

to constraints (1) -(5).
In the LP/MIP model, we extend constraints (6) - (15) with the condition

∀ 0 ≤ t < p :
∑

1≤i≤n

∑
t′≤t<t′+di

yit′ ≤ 1 (17)

which states that at each time point only one task can be active. Note that
the overall resource limit l becomes meaningless, as one only task consumes
resources at any time point. The overall resource limit can be checked a priori
by comparing it against the resource requirements ri of the tasks. There is still a
minimization problem arranging the tasks in a sequence such that total energy
cost is minimal.

This constraint is useful to model a factory which contains a single, dis-
junctive resource as the main energy consumer. Modelling that machine as a
CumulativeCost resource (together with a finite domain disjunctive constraint,
say) will lead to a massive underestimation of the energy cost required.



2.3 ParallelMachineCost

In the previous section we considered a situation where a single disjunctive
machine dominates the energy consumption. We now consider a case where b
disjunctive machines run in parallel, and each task is fixed to one of those dis-
junctive machines. Let 1 ≤ mi ≤ b be the machine on which task i is assigned.
The ParallelMachineCost constraint then consists of constraints (1) -(5) plus
the constraints

∀ 1 ≤ k ≤ b, ∀ i, j|i 6= j : mi 6= mj ∨ si + di ≤ sj ∨ sj + dJ ≤ si (18)

We can express this condition in the LP/MIP model by adding constraints
of the form

∀ 1 ≤ k ≤ d, ∀ 0 ≤ t < p :
∑

{i|mi=k}

∑
t′≤t<t′+di

yit′ ≤ 1 (19)

to constraints (6) - (15).
This ParallelMachineCost describes how all tasks compete for energy, and

tasks on a single machine must be scheduled with overlap. This model produces
stronger bounds than a CumulativeCost constraint on the tasks alone, as it
considers the disjunctive behaviour as well.

2.4 MachineChoiceCost

The final variant of the constraint family we consider looks at a situation where
we have b machines, and tasks can be assigned on alternative machines, possibly
with a different duration and resource consumption on each machine. Let dik be
the duration of task i on machine k, and rik the energy demand for task i on
machine k. The variable mi ∈Mi denotes the machine on which task i has been
assigned. It must take a value in the set of possible machines Mi for task i.

Definition 2. Constraint MachineChoiceCost expresses the following relation-
ships:

∀ 0 ≤ t < p : prt :=
∑

{i|si≤t<si+dimi
}

rimi ≤ l (20)

∀ 1 ≤ i ≤ n : 0 ≤ si ≤ si < si + dimi
≤ si + dimi

≤ p (21)

ov(t, prt, Aj) :=

{
max(0,min(yj + hj , prt)− yj) xj ≤ t < xj + wj

0 otherwise
(22)

∀ 1 ≤ j ≤ q : aj =
∑

0≤t<p

ov(t, prt, Aj) (23)

cost =

q∑
j=1

ajcj (24)



We use 0/1 variables yitk to state that task i starts at time t on machine k. If
a machine can not run on some machine k, then all entries yitk for that machine
will be zero.

lb = min

q∑
j=1

ajcj (25)

∀ 0 ≤ t < p : prt ∈ [0, l] (26)

∀ 1 ≤ k ≤ b,∀ 1 ≤ i ≤ n, 0 ≤ t < p : yitk ∈ {0, 1} (27)

∀ 1 ≤ j ≤ q,∀ xj ≤ t < xj + wj : zjt ∈ [0, hj ] (28)

∀ 1 ≤ j ≤ q : 0 ≤ aj ≤ aj ≤ aj ≤ wjhj (29)

∀ 1 ≤ i ≤ n : si =
∑

1≤k≤d

p−1∑
t=0

tyitk (30)

∀ 1 ≤ i ≤ n :
∑

1≤k≤b

p−1∑
t=0

yitk = 1 (31)

∀ 0 ≤ t < p : prt =
∑

1≤k≤b

∑
t′≤t<t′+dik

yit′krik (32)

∀ 0 ≤ t < p : prt =

q∑
j=1

zjt (33)

∀ 1 ≤ j ≤ q : aj =

xj+wj−1∑
t=xj

zjt (34)

∀ 1 ≤ k ≤ b, ∀ 0 ≤ t < p :
∑

1≤i≤n

∑
t′≤t<t′+dik

yit′k ≤ 1 (35)

3 Pruning and Search

The descriptions of the constraints above have provided a method to compute
a lower bound on the cost for each constraint with an LP model. We can use
the solution of the LP model to remove inconsistent values in the domains via
reduced cost filtering [3,5]. Given a current upper bound on the total cost z, the
current LP solution z∗ and reduced costs cit for a variable yit in the LP solution,
we observe that

z∗ + cit > z =⇒ yit = 0 (36)

This means that we can remove start time t from the domain of task i, since
every solution which would use that start time would have a total cost higher
than the current upper bound.

The reduced costs can also provide the basis for a search strategy in the finite
domain solver. We should try to assign those start times which correspond to
small reduced costs first. Note that this requires that we make the costs available
outside the constraint itself, which we haven’t implemented at this point.



4 Experiments

In this section we present a series of experiments with cumulative, disjunctive and
parallel disjunctive machine instances, where a set of n tasks is distributed over
M machines. We use 48 half-hour time periods with area costs drawn randomly
from [0, 100]. We use a time resolution of 10 minutes, this means that each area
is 3 units wide, leading in total to a horizon of p = 144.

4.1 Comparing CumulativeCost and ParallelMachineCost

In table 1, we show results for the CumulativeCost model. The columns indicate:
n, the number of tasks, ucum, the cumulative utilization percentage, the period
length p, and the resource limit l, set to achieve a desired utilization factor. The
column sat states how many of the generated problems were satisfiable, Cmip is
the optimal cost. The factor qdlp is the ratio of LP to MIP solution, tmip the time
(in ms) to solve the MIP problem, and tdlp the time to set up the finite domain
and LP model. We show the minimum (prmin), average (pravg), and maximal
(prmax) percentage of domain values removed by the reduced cost filtering.

Table 1. CumulativeCost Reduced Cost Filtering. Random area costs. 10-
minute resolution. dmax = 6.

n ucum p l sat Cmip qdlp tmip tdlp prmin pravg prmax

40 20 144 22.0 100.0 7022 99.93 24596 122 86.24 93.862 96.43
40 30 144 13.9 100.0 9198 99.86 145835 95 78.35 86.818 94.21
40 40 144 10.5 100.0 12303 99.447 2008137 100 33.157 66.77 89.11

80 20 144 42.5 100.0 13469 99.99 2915 201 85.33 94.01 96.40
80 30 144 30.3 100.0 17377 99.99 3391 174 88.58 92.87 94.28
80 40 144 21.1 100.0 25818 99.99 24447 188 83.18 87.14 90.13
80 50 144 17.7 100.0 28289 99.99 302892 207 62.24 76.62 89.23

120 20 144 66.7 100.0 24169 100.0 2068 303 93.74 95.11 96.55
120 30 144 42.6 100.0 30049 99.99 12426 278 85.59 91.48 93.53
120 40 144 32.4 100.0 37521 99.99 287266 280 72.17 84.21 91.80
120 50 144 26.3 100.0 46222 99.99 1341691 304 58.03 69.95 86.47

160 20 144 85.7 100.0 30111 99.99 2983 400 93.33 94.75 95.46
160 30 144 54.5 100.0 37407 99.99 14541 380 86.28 90.40 93.36
160 40 144 42.7 100.0 50704 99.99 58071 402 75.87 86.13 90.71
160 50 144 34.2 100.0 63507 99.99 1347527 454 60.85 71.66 83.34

All results are averages over ten runs. We see that the MIP times increase
quite quickly with the resource utilization, while the LP solving times stay within
a few hundred milliseconds. At the same time, the quality of the LP solution is
exceptional: In all cases, its cost is very close to the optimal solution. The amount
of pruning that can be achieved by reduced cost filtering is quite significant. If
we use the MIP solution as upper bound, we can remove on average between



66% and 95% of all domain values at the root node. This is of course unrealistic,
as this assumes a priori knowledge of the optimal solution. But we could start for
example with a slight relaxation of the LP bound to obtain a very high quality
initial solution.

Table 2 shows the corresponding results for parallel disjunctive machines,
each running 40 tasks. The results with 80 tasks therefore correspond to 2 ma-
chines in parallel, 120 tasks to 3 machines, and 160 tasks to 4 machines in
parallel, as indicated in column M . Columns uavg

mul and umax
mul give the average

and maximal utilization of the disjunctive machines, considering only the sum
of durations of the tasks allocated to each machine. Given the random choice of
task durations, it is possible to create instances with more than 100% utiliza-
tion on one of the parallel machines. These instances are infeasible, we disregard
them and run until we have found 10 feasible instances. The sat column gives
an indication of the percentage of satisfiable instances found for each set of
parameters.

Table 2. ParallelMachineCost Reduced Cost Filtering. Random area costs.
10-minute resolution. dmax = 6.

n M ucum uavg
mul umax

mul p l sat Cmip qdlp tmip tdlp prmin pravg prmax

80 2 20 90.87 93.82 144 40.0 28.57 33765 99.95 2087 412 73.06 84.639 93.16
80 2 30 93.68 95.56 144 27.4 21.74 41967 99.96 2713 379 73.26 84.168 89.54
80 2 40 93.33 96.46 144 20.7 20.00 40538 99.95 2156 401 77.92 82.104 86.94
80 2 50 93.02 95.21 144 16.3 19.61 38924 99.91 3117 463 42.78 77.929 91.70

120 3 20 92.89 96.81 144 62.0 52.63 60156 99.94 5078 979 63.46 76.38 87.43
120 3 30 92.29 97.22 144 40.2 6.58 56410 99.95 5185 927 68.19 78.19 92.53
120 3 40 91.11 94.93 144 30.0 1.81 56779 99.95 5185 918 65.89 78.54 91.44
120 3 50 91.64 96.11 144 24.3 2.21 56311 99.94 6894 1095 68.32 76.66 87.89

160 4 20 92.55 97.29 144 80.9 2.96 71846 99.96 8286 1464 68.43 77.52 88.17
160 4 30 93.99 98.19 144 56.4 2.79 82362 99.96 7672 1460 62.23 76.02 89.75
160 4 40 93.94 97.71 144 42.0 2.11 78011 99.95 10944 1341 60.78 73.18 85.09
160 4 50 94.18 98.68 144 33.1 7.87 80445 99.94 11038 1490 54.44 69.14 82.96

The run-time results in table 2 are somewhat different compared to the cu-
mulative case. The MIP times increase more slowly with utilization and number
of tasks, while the LP times are significantly longer. This means that the ratio
between MIP and LP is much smaller than in the cumulative case. The solution
quality, on the other hand, is very similar: The initial LP solution is very close
to the optimal MIP cost, and the reduced cost pruning again can eliminate a
large percentage of the domain values in the root node.

Note the difference in the optimal cost value Cmip in the cumulative and the
parallel machine case for matching scenarios. Using the cost of the cumulative
model as an approximation of the parallel machine case would lead to a very
large under-estimation of the cost, i.e. it would be far too optimistic. This shows



why we need this complete family of constraints, instead of just combining a
CumulativeCost constraint with several standard Disjunctive constraints.

Figures 3 and 4 show more detailed results for the CumulativeCost and
ParallelMachineCost results for 160 tasks (four machines in parallel for the
ParallelMachineCost model). We compare the run time of the DLP and the
MIP models at the root node for different cumulative utilization rates from 20%
to 50%. For the CumulativeCost model we can see a clear increase in time for
both LP and MIP with increased utilization, with MIP times up to 5000 times
longer than LP solving times. For the ParallelMachineCost model the ratio
MIP/LP is much smaller, and there is no easily seen link between utilization
and execution times. This seems to indicate that the disjunctive restrictions
seem to dominate for these utilization values.

Fig. 3. LP/MIP ratio for cumulative problem: 160 tasks, time resolution 10 min,
cumulative utilisation between 20% and 50%

 1000

 10000

 100000

 1e+06

 1e+07

300 400 500 600 700

M
IP

 (
m

s)

LP (ms)

x

5x
10x

100x

1000x

5000x

20%
30%
40%
50%

4.2 Real-world Cost Data

Tables 3 and 4 repeat some of the experiments using real-world cost data for
electricity prices from Ireland. Overall, results are quite similar, but there is one
entry (80 tasks, 40% utilisation) in table 4 which needs further investigation.

4.3 Comparing CumulativeCost and DisjunctiveCost

We also ran some experiments to compare CumulativeCost and DisjunctiveCost

models with n = 40 tasks. For the disjunctive case the cumulative resource limit
has no effect, as long as it is chosen to be larger than rmax, since only a single



Fig. 4. LP/MIP ratio for multiple disjunctive problem: 4 machines, 160 tasks,
time resolution 10min, cumulative utilisation between 20% and 50%

 10000

1000 1250 1500 1750 2000

M
IP

 (
m

s)

LP (ms)

2x

5x

10x

20%
30%
40%
50%

Table 3. CumulativeCost Reduced Cost Filtering. Real-world area costs. 10-
minute resolution. dmax = 6.

n ucum p l sat Cmip qdlp tmip tdlp prmin pravg prmax

80 20 144 44.8 100.0 16207 99.996 3991 197 88.60 94.41 97.21
80 30 144 29.7 100.0 16301 99.999 5210 175 81.85 90.48 95.19
80 40 144 21.3 100.0 24078 99.991 13967 181 74.82 85.30 90.01

160 20 144 86.5 100.0 34019 99.999 3909 397 92.58 94.84 96.51

Table 4. ParallelMachineCost Reduced Cost Filtering. Real-world area costs.
10-minute resolution. dmax = 6.

n M cum uavg
mul umax

mul p l sat Cmip qdlp tmip tdlp prmin pravg prmax

80 2 20 93.99 96.60 144 40.5 15.39 32384 99.99 2736 381 76.04 79.35 83.84
80 2 30 93.61 95.83 144 28.2 8.20 35306 99.99 2896 328 70.89 78.50 83.07
80 2 40 92.57 95.07 144 20.1 6.94 32620 89.99 2322 320 0.0 72.64 83.84
80 2 50 93.12 94.93 144 16.2 9.90 33995 99.98 3117 341 69.119 76.30 81.29

160 4 20 92.26 97.57 144 81.9 5.85 65034 99.987 8326 1223 70.06 75.14 79.50
160 4 30 93.21 98.26 144 56.0 1.79 68825 99.98 11192 1267 64.06 73.73 78.04
160 4 40 93.28 97.85 144 41.6 2.94 66701 99.99 11983 1264 70.55 75.88 81.54
160 4 50 92.69 98.19 144 33.3 2.10 65999 99.98 13850 1345 68.98 74.37 78.84



task can be scheduled at any one time, and no overlap is possible. We there-
fore set the resource limit to l = rmax + 1 in both cases. In both cases we use
random area costs and 10-minute resolution. The maximal duration of a task is
dmax = 6.

Table 5. Comparing CumulativeCost with DisjunctiveCost for 40 tasks

type n ucum umul p l sat Cmip tmip tdlp qdlp prmin pravg prmax

disj 40 - 91.6 144 9 66.667 17731 896 156 99.95 81.272 87.821 93.618
cumul 40 50.8 - 144 9 100.0 14478 138736.6 147.6 98.26 5.50 41.25 79.08

Even given the limited sample size, we see that the cumulative problem is
much harder to solve for MIP than the disjunctive problem, while the LP run-
times are comparable. Also note that even with this very restrictive resource
limit, the cumulative cost is still significantly lower. This is another indicator
that we really need all of the proposed variants to obtain good cost estimates,
and thus good domain pruning.

5 Summary and Future Work

We have presented a family of resource constraints which allow us to model
scheduling problems with time variable resource cost. Our main use case is energy
cost minimization, by avoiding peak electricity usage periods in the generated
schedule. The proposed constraints extend existing cumulative, disjunctive and
machine choice constraints. Initial experiments show that reduced cost filtering
can significantly restrict domains of the start variables of our constraints, while
the LP relaxation provides very good cost estimates.

We did not have time to experiment with the MachineChoiceCost model
yet. We expect this to be significantly harder to solve as the number of machines
increase, since the number of variables yitk per task increases with b, the number
of machines.

We also want to study the incremental solution of the LP model as the finite
domain solver branches through its search space. The times given here are for
the root node only, but we do not expect to resolve the complete problem from
scratch at every search node, especially as the reduced cost filtering already
removes a large percentage of the domain values in the first step. This should
mean that the times given for the LP model do not have to be multiplied with
the number of choices taken in order to estimate the time needed to find the
complete solution.



References

1. A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-
ing problems. Journal of Mathematical and Computer Modelling, 17(7):57–73,
1993.

2. P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. Kluwer, Dortrecht, 2001.

3. Filippo Focacci, Andrea Lodi, and Michela Milano. Cost-based domain filtering.
In Joxan Jaffar, editor, CP, volume 1713 of Lecture Notes in Computer Science,
pages 189–203. Springer, 1999.

4. John Hooker. Integrated Methods for Optimization. Springer, New York, 2007.
5. Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-

gramming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York,
NY, USA, 2006.

6. H. Simonis and T. Hadzic. Constraint-based scheduling for reducing peak electric-
ity use. In CompSust’10: 2nd International Conference on Computational Sustain-
ability, Boston, MA, June 2010. http://4c.ucc.ie/~hsimonis/sustain.pdf.

7. H. Simonis and T. Hadzic. An energy cost aware cumulative. In Third International
Workshop on Bin Packing and Placement Constraints BPPC’10, Bologna, Italy,
June 2010. http://4c.ucc.ie/~hsimonis/tidacpaiorabstract.pdf.

8. H. Simonis and T. Hadzic. A resource cost aware cumulative. In The 9th Inter-
national Workshop on Constraint Modelling and Reformulation (ModRef 2010),
September 2010. (to appear) http://4c.ucc.ie/~hsimonis/tida1.pdf.

9. Helmut Simonis. Building industrial applications with constraint programming. In
Hubert Comon, Claude Marché, and Ralf Treinen, editors, CCL, volume 2002 of
Lecture Notes in Computer Science, pages 271–309. Springer, 1999.

10. Helmut Simonis. Models for global constraint applications. Constraints, 12(1):63–
92, 2007.

http://4c.ucc.ie/~hsimonis/sustain.pdf
http://4c.ucc.ie/~hsimonis/tidacpaiorabstract.pdf
http://4c.ucc.ie/~hsimonis/tida1.pdf

	A Family of Resource Constraints for Energy Cost Aware Scheduling
	Helmut Simonis and Tarik Hadzic

