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Abstract

In this paper1 we introduce a class of Markov decision
processes that arise as a natural model for many renew-
able resource allocation problems. Upon extending re-
sults from the inventory control literature, we prove that
they admit a closed form solution and we show how to
exploit this structure to speed up its computation.
We consider the application of the proposed framework to
several problems arising in very different domains, and as
part of the ongoing effort in the emerging field of Compu-
tational Sustainability we discuss in detail its application
to the Northern Pacific Halibut marine fishery. Our ap-
proach is applied to a model based on real world data,
obtaining a policy with a guaranteed lower bound on the
utility function that is structurally very different from the
one currently employed.

1 Introduction

The problem of devising policies to optimally allocate
resources over time is a fundamental decision theoretic
problem with applications arising in many different fields.
In fact, such decisions may involve a variety of different
resources such as time, energy, natural and financial re-
sources, in allocation problems arising in domains as di-
verse as natural resources management, crowdsourcing,
supply chain management, QoS and routing in networks,
vaccine distribution and pollution management.
A particularly interesting class of such problems involves
policies for the allocation ofrenewable resources. A key

1This paper is already published in the Proceedings of the 26th Con-
ference on Uncertainty in Artificial Intelligence, Catalina Island, 2010

and unique aspect of such a resource type is the fact
that, by definition, its stock is constantly replenished by
an intrinsic growth process. The most common example
are perhaps living resources, such as fish populations or
forests, that increase constantly by natural growth and re-
production, but less conventional resources such as users
in a social community or in a crowdsourcing project share
the same intrinsic growth feature due to social interac-
tions.
A common feature of the growth processes presented is
that they are density dependent, in the sense that the
growth rate depends on the amount of resource avail-
able. This fact creates a challenging management prob-
lem when the aim of the intervention is to optimally use
the resource, for instance by harvesting a fish population
or by requiring some effort from a crowdsourcing com-
munity, especially when economic aspects are factored in.
We face a similar challenge in vaccine distribution prob-
lems, where the growth rate of infections is again density
dependent and the objective is to reduce its spreading.

This study, in particular, has been motivated by the
alarming consideration that many natural resources are
endangered due to over-exploitation and generally poorly
managed. For instance, the Food and Agricultural Orga-
nization estimates in their most recent report that7% of
marine fish stocks are already depleted,1% are recover-
ing from depletion,52% are fully exploited and17% are
overexploited ([1]).

One of the most fundamental aspects of the problem
seems to be the lack of an effective way to handle the un-
certainty affecting the complex dynamics involved. While
in most of the works in the literature [6, 7] these growth
processes are modeled with deterministic first-order dif-
ference or differential equations, this approach often rep-
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resents an oversimplification. In fact their intrinsic growth
is often affected by many variables and unpredictable fac-
tors. For example, in the case of animal populations
such as fisheries, both weather and climate conditions are
known to affect both the growth and the mortality in the
population. Other variable ecological factors such as the
availability of food or the interaction with other species
also influence their natural dynamics to the point that it is
very difficult even to obtain reliable mathematical models
to describe their dynamics.

On the other hand, stochastic differential equations can
easily incorporate these variable factors and therefore rep-
resent a more robust description. However, obtaining a
probabilistic description of such systems is far from easy.
In fact, even if in principle uncertainty could be reduced
by collecting and analyzing more data, it is generally be-
lieved that complex and stochastic systems, such a ma-
rine environments, could never become predictable (to the
point that the authors of [13] believe that “predictabilityof
anything as complex as marine ecosystem will forever re-
main a chimera”).
Moreover, there are situations of “radical uncertainty”
([8]) or ambiguity where a stochastic description is not
feasible because the probabilities are not quantifiable. For
instance, many fundamental environmental issues that we
are facing, such as those surrounding the climate change
debate, involve ambiguity in the sense of scientific con-
troversies or irreducible beliefs that cannot be resolved.

In the context of stochastic optimization, there are two
main ways to deal with uncertainty. The first one involves
a risk managementapproach, where it is assumed that the
probabilities of the stochastic events are known a priori or
are learned from experience through statistical data anal-
ysis. Within this framework, decisions are taken accord-
ing to stochastic control methods. Using tools such as
risk-sensitive Markov decision processes ([12, 15]), it is
also possible to encode into the problem the attitude to-
wards risk of the decision maker by using an appropriate
utility function. In particular the degree of risk aversion
can be controlled by sufficiently penalizing undesirable
outcomes with the utility function. When a fine grained
stochastic description is not available, worst-case game
theoretic frameworks, that are inherently risk averse, play
a fundamental role because it is often crucial to devise
policies that avoid catastrophic depletion. This type of
approach, where the problem of data uncertainty is ad-
dressed by guaranteeing the optimality of the solution for
the worst realizations of the parameters, is also known in
the literature asrobust optimization([3, 5]), and has been
successfully applied to uncertain linear, conic quadratic
and semidefinite programming.

In this paper, we present a class of Markov decision
processes that arise as a natural model for many resource
management problems. Instead of formulating the opti-

mization problem in a traditional form as a maximization
of an expectedutility, we tackle the management prob-
lems in a game theoretic framework, where the optimiza-
tion problem is equivalent to adynamic game against na-
ture. This formulation is a particular type ofMarkov game
[14] (sometimes called astochastic game[16]) where
there are only two agents (the manager and nature) and
they have diametrically opposed goals.

As mentioned before, although this formulation is more
conservative, it also eliminates the very difficult task of
estimating the probabilities of the stochastic events af-
fecting the system. In a context where the emphasis in
the literature has traditionally been on the study of ex-
pected utilities, this approach represents a new perspec-
tive. Moreover, the policies thus obtained provide a lower
bound on the utility that can be guaranteed to be achieved,
no matter the outcomes of the stochastic events. For this
class of problems, we are able to completely characterize
the optimal policy with a theoretical analysis that extends
results from the inventory control literature, obtaining a
closed form solution for the optimal policy.

As part of the new exciting research area of Computa-
tional Sustainability ([10]), where techniques from com-
puter science and related fields are applied to solve the
pressing sustainability challenges of our time, we present
an application of the proposed framework to the North-
ern Pacific Halibut fishery, one of the largest and most
lucrative fisheries of the Northwestern coast. In particu-
lar, our method suggests the use of a cyclic scheme that
involves periodic closures of the fishery, a policy that is
structurally different from the one usually employed, that
instead tries to maintain the stock at a given size with ap-
propriate yearly harvests. However, this framework is in-
teresting in its own right and, as briefly mentioned before,
it applies to a variety of other problems that share a simi-
lar mathematical structure and that arise in very different
domains. For example, we can apply our framework to
pollution problems, where a stock of pollutants is evolv-
ing over time due to human action, and the objective is
to minimize the total costs deriving from the presence of
a certain stock of pollutants and the costs incurred with
cleanups, but also to crowdsourcing and other problems.

2 MDP Formulation

In this section, we will formulate the optimization prob-
lem as discrete time, continuous space Markov decision
process. Whenever possible, we will use a notation con-
sistent with the one used in [4]. Even if we will consider
only a finite horizon problem, the results can be extended
to the infinite horizon case with limiting arguments. To
make the description concrete, the model will be mostly
described having a natural resource management problem

2



in mind.

We consider a dynamical system evolving over time ac-
cording to

xn+1 = f(xn − hn, wn), (1)

wherexn ∈ R denotes the stock of a renewable resource
at timen. By using a discrete time model we implicitly
assume that replacement or birth processes occur in reg-
ular, well defined “breeding seasons”, wheref(·) is a re-
production functionthat maps the stock level at the end of
one season to the new stock level level at the beginning of
the next season. The control or decision variable at year
n is the harvest levelhn (occurring between two consec-
utive breeding seasons), that must satisfy0 ≤ hn ≤ xn.

As mentioned in the introduction, the functionf(·) cap-
tures the intrinsic replenishment ability of renewable re-
sources, that in many practical applications (such as fish-
eries or forestry) is density dependent: growth rate is high
when the habitat is underutilized but it decreases when
the stock is larger and intraspecific competition intensi-
fies. Specific properties of reproduction functionsf(·)
will be discussed in detail later, but we will always as-
sume that there is a finite maximum stock level denoted
bym.
To compensate for the higher level description of the com-
plex biological process we are modeling, we introduce un-
certainty into the model throughwn, a random variable
that might capture, for example, the temperature of the
water, an uncontrollable factor that influences the growth
of the resource. Given the worst case framework we are
considering, we will never make assumptions on the prob-
ability distribution ofwn but only on its support (or, in
other words, on the possible outcomes). In fact in an ad-
versarial setting it is sufficient to consider all possible sce-
narios, each one corresponding to an action that nature
can take against the policy maker, without assigning them
a weight in a probabilistic sense.

Given the presence of stochasticity, it is convenient to
consider closed loop optimization approaches, where de-
cisions are made in stages and the manager is allowed to
gather information about the system between stages. In
particular, we assume that the state of the systemxn ∈ R

is completely observable. For example, in the context
of fisheries this means that we assume to know exactly
the level of the stockxn when the harvest levelhn is
to be chosen. In this context, apolicy is a sequence of
rules used to select at each period a harvest level for each
possible stock size. In particular, anadmissible policy
π = {µ1, . . . , µN} is a sequence of functions, each one
mapping stocks sizesx to harvestsh, so that for allx and
for all i

0 ≤ µi(x) ≤ x. (2)

2.1 Resource Economics

We now consider the economic aspects of the model. We
suppose that the revenue obtained from a harvesth is pro-
portional toh through a fixed pricep, and that harvesting
is costly. In particular we assume that there is

• a fixed set-up costK each time a harvest is under-
taken

• a marginal harvest costg(x) per unit harvested when
the stock size isx

It follows that the utility derived from a harvesth from an
initial stockx is

ph−

∫ x

x−h

g(y)dy −K , R(x) −R(x− h) −K, (3)

where

R(x) = px−

∫ x

0

g(y)dy.

We assume that the marginal harvesting costg(x) in-
creases as the stock sizex decreases. We include time
preference into the model by considering a fixed discount
factorα = 1/(1 + δ) ( 0 ≤ α ≤ 1), whereδ > 0 is a
discount rate.

For any given horizon lengthN , we consider the prob-
lem of finding anadmissible policyπ = {µi}i∈[1,N ] that
maximizes

Cπ
N (x) =

min
w1, . . . , wN

wi ∈W (xi)

N
∑

n=1

αn(R(xn) −R(xn − hn) −Kδ0(hn))

wherexn is subject to (1) andhn = µn(xn), with initial
conditionx1 = x and

δ0(x) =

{

1 if x > 0,
0 otherwise.

This is a Max-Min formulation of the optimization prob-
lem, where the goal is to optimize the utility in a worst-
case scenario. As opposed to the maximization of anex-
pectedutility ([17, 18]), this formulation is inherently risk
averse. An advantage of this formulation is that there is no
need to characterize the probability distribution of the ran-
dom variableswk explicitly, but only to determine their
support. In fact, one should consider all the possible sce-
narios, without worrying about the probabilities of their
occurrence.
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3 Main Results

3.1 Minimax Dynamic Programming

A policy π is called an optimalN -period policy ifCπ
N (x)

attains its supremum over all admissible policies atπ for
all x. We call

CN (x) = sup
π∈Π

Cπ
N (x),

theoptimal value function, whereΠ represents the set of
all admissible policies.

As a consequence of the principle of optimality([4]),
the dynamic programming equation for this problem
reads:

C0(x) = 0,

Cn(x) = max
0≤hn≤x

min
wn∈W

R(xn) −R(xn − hn)

−Kδ0(hn) + αCn−1(f(x− hn, wn))

for all n > 0. The latter equation can be rewritten in terms
of the remaining stockz = x−hn (the post decision state)
as

Cn(x) = α max
0≤z≤x

(

R(x) − R(z) − Kδ0(x − z) + min
wn∈W

Cn−1(f(z, wn))

)

.

(4)

This formulation of the problem is effectively analogous
to a game against naturein the context of a two-person
zero-sum game. The objective is in fact devising the value
of z that maximizes the utility, but assuming that nature
is actively playing against the manager with the opposite
intention.

It can be shown (see [4]) thatCn(x), the revenue func-
tion associated with an optimal policy, is the (unique) so-
lution to equation (4). From equation (4) we see that an
optimal policy, when there aren periods left and the stock
level isx, undertakes a harvest if and only if there exists
0 ≤ z ≤ x such that

R(x) −R(z) −K + α min
wn∈W

Cn−1(f(z, wn)) >

α min
wn∈W

Cn−1(f(x,wn)).

In fact, an action should be taken if and only if its asso-
ciated benefits are sufficient to compensate the fixed cost
incurred. By defining

Pn(x) = −R(x) + α min
wn∈W

Cn−1(f(x,wn)), (5)

we have that an optimal policy, when there aren periods
left and the stock level isx, undertakes a harvest if and
only if there exists0 ≤ z ≤ x such that

Pn(z) −K > Pn(x). (6)

To examine this kind of relationship it is useful to intro-
duce the notion ofK-concavity, a natural extension of the
K-convexity property originally introduced by Scarf in
[19] to study inventory control problems.

3.2 Preliminaries on K-concavity

A function β(·) is K-concave if given three pointsx <
y < z, β(y) exceeds the secant approximation toβ(y)
obtained using the pointsβ(x) −K andβ(z). Therefore
for K = 0 no slack is allowed and one recovers the stan-
dard definition of concavity. Formally

Definition 1. A real valued functionβ(·) isK-concave if
for all x, y, x < y, and for allb > 0

β(x) − β(y) − (x− y)
β(y + b) − β(y)

b
≤ K. (7)

We state some useful results concerningK-concavity:

Lemma 1. The following properties hold:

• A concave function is0-concave and henceK-
concave for allK ≥ 0 .

• If β1(q) andβ2(q) are respectivelyK1-concave and
K2-concave for constantsK1 ≥ 0 andK2 ≥ 0, then
aβ1(q) + bβ2(q) is (aK1 + bK2)-concave for any
scalarsa > 0 andb > 0.

• If β(·) is nondecreasing and concave onI
and ψ(·) is nondecreasing andK-concave on
[infx∈I β(x), supx∈I β(x)] then the compositionψ ◦
β isK-concave onI.

• Let β1(x), . . . , βN (x) be a family of functions such
that βi(x) is Ki-concave. Thenγ(x) = mini βi(x)
is (maxiKi)-concave.

• If β(·) is a continuous,K-concave function on the
interval [0,m], then there exists scalars0 ≤ S ≤
s ≤ m such that

– β(S) ≥ β(q) for all q ∈ [0,m].

– Eithers = m andβ(S)−K ≤ β(m) or s < m
and β(S) − K = β(s) ≥ β(q) for all q ∈
[s,m).

– β(·) is a decreasing function on[s,m].

– For all x ≤ y ≤ s, β(x) −K ≤ β(y).

The proof is not reported here for space reasons, but can
be found in [9]. Similar results forK-convex functions
are proved in [4].

In the following section we will prove by induction the
K-concavity of the functionsPn(x), n = 1, . . . , N . This
will allow us to characterize the structure of the optimal
policy by using the last assertion of Lemma 1.
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3.3 On the Optimality of (S − s) policies

Suppose that we can prove thatPn(x) is continuous and
strictly K-concave. Then by Lemma 1 there existsSn, sn

with the properties proved in the last point of the Lemma.
It is easy to see that condition (6) is satisfied only if
x > s, in which case the optimal value of the remaining
stockz would be preciselySn. In conclusion, if we can
prove the continuity andK-concavity of the functions
Pn(x), n = 1, . . . , N , then following feedback control
law, known as a nonstationary(S − s) policy, is optimal:

At periodn, a harvest is undertaken if and only if the
current stock level is greater thansn; in that case the
stock is harvested down toSn.

This policy is known in the inventory control literature
as a nonstationary(S − s) policy 2, because the levels
Sn andsn are time dependent. Since it is assumed that
the marginal harvest costg(x) is a non increasing func-
tion, we definex0 to be the zero profit level such that
g(x0) = p. If g(x) < p for all x, we definex0 = 0. As
a consequence for allx > x0 we have thatR′(x) ≥ 0 so
thatR (defined in equation (3)) is non decreasing. More-
over if the marginal harvest costg(x) is a non increasing
function, thenR is convex.

We also need to make an assumption on the concavity
of R(·). In particular the marginal cost functiong is al-
lowed to decrease but not by too much. Letm be an upper
bound on the possible values ofx andG(x) =

∫ x

0
g(t)dt,

then we need

τ = G(m) −mg(m) < K

(

1 − α

α

)

, (8)

a condition that implies theτ -concavity ofR.
The main result is the following theorem, where we

show that if some assumptions are satisfied, the optimal
policy is of (S − s) type. The key point of this induc-
tive proof is to show that theK-concavity property is pre-
served by the Dynamic Programming operator.

Theorem 1. For any setup costK > 0 and any posi-
tive integerN , if f(·, w) is nondecreasing and concave
for anyw and if g is non increasing and satisfies condi-
tion (8), then the functionsPn(x) defined as in (5) are
continuous andK-concave for alln = 1, . . . , N . Hence
there exists a non-stationary(S − s) policy that is opti-
mal. The resulting optimal present value functionsCn(x)
are continuous, nondecreasing andK-concave for all
n = 1, . . . , N .

Proof. From equation (8) we know that there exists a

2For the sake of consistency, we callsn the threshold value that gov-
erns the decision, even if in our caseSn ≤ sn.

numberk such that

(K + τ)α < k < K. (9)

The proof is by induction onN . The base caseN = 0
is trivial becauseC0(x) = 0 for all x, and therefore it
is continuous, nondecreasing andk-concave. Now we
assume thatCn(x) is continuous, nondecreasing andk-
concave, and we show thatPn+1(x) is continuous and
K-concave, and thatCn+1(x) is continuous, nondecreas-
ing andk-concave.
Since f(·, w) is nondecreasing and concave for allw,
Cn(f(z, wn)) isK-concave by Lemma (1). By Lemma 1

min
wn∈W

Cn−1(f(z, wn))

is alsoK-concave. Again using Lemma 1, if−R(x) is
concave, then by equation (5)Pn+1(x) is K-concave.
The continuity ofPn+1(x) is implied by the continuity
of Cn(x) andR(x).
Given thatPn+1(x) isK-concave and continuous, the op-
timal action is to harvest down toSn+1 if and only if the
current stock level is greater thansn+1, so we have

Cn+1(x) =

{

α(Pn+1(x) + R(x)) if x ≤ sn+1,

α(Pn+1(Sn+1) + R(x) − K) if x > sn+1.

(10)
The continuity ofCn+1(x) descends from the continu-
ity of Pn+1(x) and because by definitionPn+1(sn+1) +
R(sn+1) = Pn+1(Sn+1) + R(sn+1) −K. To show it is
nondecreasing, consider the case0 ≤ x1 < x2 ≤ sn+1:

Cn+1(x2) − Cn+1(x1) =

α

(

min
wn∈W

Cn(f(x2, wn)) − min
wn∈W

Cn(f(x1, wn))

)

.

If for all x2 > x1 ≥ 0,

min
wn∈W (x2)

f(x2, wn) ≥ min
wn∈W (x1)

f(x1, wn),

thenCn+1(x2)−Cn+1(x1) ≥ 0 becauseCn(x) is nonde-
creasing. For the casesn+1 < x1 < x2 andsn+1 ≥ x0:

Cn+1(x2) − Cn+1(x1) = α(R(x2) −R(x1)) ≥ 0,

becauseR is nondecreasing on that interval. It must be the
case thatSn+1 > x0 because harvesting belowx0 is not
profitable and reduces the marginal growth of the stock, so
given thatsn+1 ≥ Sn+1 ≥ x0 we conclude thatCn+1(x)
is nondecreasing. It remains to show thatCn+1(x) is k-
concave, and by equation (9) it is sufficient to show that
it is (K + τ)α-concave. To show that definition (7) holds
for Cn+1(x), we consider several cases.
Whenx < y ≤ sn+1 , according to equation (10) we have
thatCn+1(x) = α(Pn+1(x) +R(x)) and therefore equa-
tion (7) holds by Lemma 1 becausePn+1 is K-concave
andR(·) is τ -concave. Similarly whensn+1 < x < y,
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equation (7) holds becauseR(·) is τ -concave.
Whenx ≤ sn+1 < y equation (7) reads

Cn+1(x) − Cn+1(y) − (x − y)
Cn+1(y + b) − Cn+1(y)

b
≤

α

(

K + R(x) − R(y) − (x − y)
R(y + b) − R(y)

b

)

≤

α(K + τ).

becausePn+1(x) ≤ Pn+1(Sn+1) andR(·) is τ -concave.

4 Consistency and Complexity

Even if Theorem 1 completely describes the structure of
the optimal policy, in general there is no closed form so-
lution for the values ofSn andsn, that need to be com-
puted numerically. In order to use the standard dynamic
programming approach, the state, control and disturbance
spaces must be discretized, for instance using an evenly
spaced grid. Since we are assuming that those spaces are
bounded, we obtain in this way discretized sets with a fi-
nite number of elements. We can then write DP like equa-
tions for those points, using an interpolation of the value
function for the points that are not on the grid. The equa-
tions can be then solved recursively, obtaining the semi-
optimal action to be taken for each point of the grid, that
can then be extended by interpolation to obtain an approx-
imate solution to the original problem.

As with all discretization schemes, we need to discuss
the consistencyof the method. In particular, we would
like (uniform) convergence to the solution of the original
problem in the limit as the discretization becomes finer. It
is well known that in general this property does not hold.
However in this case Theorem 1 guarantees the continuity
of Cn, that in turn implies theconsistencyof the method,
even if the policy itself is not continuous as a function of
the state([4]). Intuitively, discrepancies are possible only
around the thresholdsn, so that they tend to disappear as
the discretization becomes finer.

The standard dynamic programming algorithm in-
volves O(|X||W ||U ||T |) arithmetic operations, where
|X| is the number of discretized states,|W | the number
of possible outcomes of the (discretized) uncontrollable
events,|U | the maximum number of possible discretized
actions that can be taken in any given state andT is the
length of the time horizon. However, the priori knowledge
of the structure of the optimal policy can be used to speed
up the computation. In fact it is sufficient to finds (for
example by bisection) and compute the optimal control
associated with any state larger thans to completely char-
acterize the policy for a given time step. The complexity
of this latter algorithm isO(|W ||U ||T | log |X|).

5 Case Study: the Pacific Halibut

As part of the ongoing effort in the emerging field of Com-
putational Sustainability, we consider an application of
our framework to the Pacific Halibut fishery.
The commercial exploitation of the Pacific halibut on the
Northwestern coastline of North America dates back to
the late 1800s, and it is today one of the region’s largest
and most profitable fisheries.The fishery developed so
quickly that by the early 20th century it was starting to
exhibit signs of overfishing. After the publication of sci-
entific reports which demonstrated conclusively a sharp
decline of the stocks, governments of the U.S. and Canada
signed a treaty creating the International Pacific Halibut
Commission (IPHC) to rationally manage the resource.
The IPHC commission controls the amount of fish caught
annually by deciding each year’stotal allowable catch
(TAC), that is precisely the decision variablehn of our
optimization problem.

5.1 Management Problem Formulation

To develop a bioeconomic model of the fishery, we have
extracted data3 from the IPHC annual reports on esti-
mated biomassxt, harvestht and effortEt (measured in
thousands of skate soaks) for Area 3A (one of the ma-
jor regulatory areas in which waters are divided) for a33
years period from 1975 to 2007. To model the population
dynamics, we consider the Beverton-Holt model that uses
the following reproduction function

xn+1 = f(sn) = (1 −m)sn +
r0sn

1 + sn/M
, (11)

wheresn = xn − hn is the stock remaining after fishing
(escapement) in yearn. This model can be considered
as a discretization of the continuous-time logistic equa-
tion. Here, parameterm represents a natural mortality
coefficient,r0 can be interpreted as a reproduction rate
andM(r0 − m)/m is the carrying capacity of the envi-
ronment. The (a priori) mortality coefficient we use is
m = 0.15, that is the current working value used by the
IPHC. The values ofr0 andM are estimated by ordinary
least square fitting to the historical data. Estimated values
thus obtained are reported in table 1, while the fitted curve
is shown in figure 1.

Following [18], we suppose that the system is affected
by stochasticity in the form of seasonal shockswn that
influence only the new recruitment part

xn+1 = f(sn, wn) = (1−m)sn +wn

r0sn

1 + sn/M
. (12)

Instead of assuming an a priori probability distribution for
wn or trying to learn one from data (that in our case would

3Data is available from the authors upon request.
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Figure 1: Fitted models (11) and (13) compared to histor-
ical data (in bold).

not be feasible given current scarce data availability), we
will make use of the framework developed in the previous
sections. In particular we will (a priori) assume thatwn

are random variables all having the same finite support
that we will learn from data, but we will not make any
assumption on the actual weight distribution. With our
data, we obtain thatwn ∈ [1 − 0.11, 1 + 0.06] = Iw.

For the economic part of the model, we start by model-
ing the relationship between a harvestht that brings the
population level fromxt to xt − ht and the effortEt

needed to accomplish this result. We will a priori assume
that there is amarginal effortinvolved, so that

Et =

∫ xt

xt−ht

1

qyb
dy (13)

for some q and b. This is inspired by the fact that
less effort is required when the stock is abundant, and
can also be interpreted as an integral of infinitesimal
Cobb-Douglas production functions (a standard economic
model for productivity) whereb and g are the corre-
sponding elasticities. Estimated values obtained by least

Parameter Value
q 9.07979 10−7

b 2.55465
p 4, 300, 000$ / (106 pounds)
K 5, 000, 000$
c 200, 000$ / 1000 skate soaks
δ 0.05

m 0.15
M 196.3923 106 pounds
r0 0.543365

Table 1: Base case parameter set.

squares fitting are reported in table 1, while the resulting
curve is compared with historical data in figure 1.
Costs involved in the Halibut fishery are divided into two
categories:fixed costsandvariable costs. Fixed costs in-
clude costs that are independent of the number and the
duration of the trips a vessel makes (therefore generically
independent from the effortEt). For example, vessel re-
pairs costs, license and insurance fees, mooring and dock-
age fees are typically considered fixed costs. We will de-
note withK the sum of all the fixed costs, that will be
incurred if and only if a harvest is undertaken.
Variable costs include all the expenses that are depen-
dent on the effort level. Variable costs typically include
fuel, maintenance, crew wages, gear repair and replace-
ment. We assume that the total variable costs are propor-
tional to the effortEt (measured in skate soaks) accord-
ing to a constantc. Parameterc is set to200, 000$ for
1000 skate soaks (200$/skate) as estimated in [2]. Fol-
lowing the analysis of the historical variable and fixed
costs for the halibut fishery carried on in [11], we assume
K = 5, 000, 000$ for area 3A. The unit pricep for the
halibut is set to4, 300, 000$/ 106 pounds, as in [2].
If we further assume a fixed discount rateδ = 0.05, we
obtain a formulation of management problem for the Hal-
ibut fishery in Area 3A that fits into the framework de-
scribed in the previous section. In particular, the prob-
lem for anN years horizon is that of finding an admis-
sible policyπ = {µi}i∈[1,N ] that maximizes the revenue
Cπ

N (x) wherexn is subject to (12),hn = µn(xn) and
R(x) = px− c

∫ x

0
1

qyb dy.

5.2 Optimal Policy

By using the dynamic programming approach on the
problem discretized with a step size of0.25×106 pounds,
we compute the optimal policy for a management hori-
zon ofN = 33 years, that is the length of our original
time series. As predicted by Theorem 1, the optimal pol-
icy π∗ = {µ1, . . . , µN} for the model we constructed for
area 3A is a non stationary(S − s) policy. In figure 2(a)
we plot the functionµ1(·) to be used in the first year (the
values ofS1 ands1 are133 and176.75 respectively). In
words, the optimal policy dictates that at periodn a har-
vest is to be undertaken if and only if the current stock
level is greater thansn; in that case the stock is harvested
down toSn.

The trajectory of the system when it is managed using
the optimal policy is shown in figure 2, together with the
corresponding optimal harvests. As we can see, the opti-
mal policy ispulsing, in the sense that it involves periodic
closures of the fishery, when no harvest should be under-
taken so that the fish stock has time to recover. Of course,
this kind of policy could be acceptable in practice only in
combination with some rotation scheme among the dif-
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(a) Optimal rule for selecting harvests in the first year.
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(b) Stock trajectory and corresponding optimal harvests.

Figure 2: The optimal policy.

ferent Areas, so that a constant yearly production can be
sustained.

This scheme is very different from the Constant Pro-
portional Policy (CPP) that has been traditionally used to
manage the Halibut fishery. In fact a CPP works by choos-
ing the yearly TAC as a fixed fraction of the current stock
level xt, and is aimed at maintaining the exploited stock
size (the escapement) at a given fixed level. This policy
can be seen as a simplified version of an(S − s) policy
where the two levels do not depend on the stagen and
coincide, thus defining the target stock size.

To see the advantage of the optimal(S − s) policy, we
compare it with the historical harvest proportions and with
a CPP policy that uses the historical average harvest rate
a = 0.1277. Table 2 summarizes the discounted revenues
corresponding to an initial stock sizex1 = 90.989 million
pounds, that is the estimated stock size in 1975.

Compared to the historical policy or the CPP policy,

Policy Disc. revenue ($) Loss ($)
OptimalS − s 9.05141 × 108 −
Historical rates 7.06866 × 108 1.98275 × 108

Average CPP 6.51849 × 108 2.53292 × 108

Rolling Horizon 8.73605 × 108 3.1536 × 107

Table 2: Policy Comparison
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Figure 3: Harvests and stock trajectory with the rolling
horizon strategy.

revenues for the optimal(S − s) policy are about35%
higher, as reported in table 2. Notice that the comparison
is done assuming a worst case realization of the stochas-
ticity, or in other words that the nature is actively playing
against the manager.

Notice that the large harvest prescribed by the optimal
(S − s) policy in the last year is an artifact of the finite
horizon effect, caused by the fact that there is no reason
not to exhaust the resource at the end of the management
horizon (as long as it is profitable to harvest it). However
it does not affect the comparison significantly due to the
discount rate. In fact the (discounted) revenue for the en-
tire last large harvest only accounts for less than8% of the
total revenue. This is confirmed by looking at the results
obtained with a rolling horizon strategy that always picks
the optimal action with a33-years long management hori-
zon in mind. As shown in figure 3, this (suboptimal) strat-
egy is not affected by the finite horizon effect. The rolling
horizon strategy still involves periodic closures of the fish-
ery and significantly outperforms the historical policies,
as reported in table 2.

To further clarify that the pulsing nature of the optimal
harvests is not an artifact of the finite horizon, it is also
interesting to notice that the theoretical results on the op-
timality of (S−s) policies and the corresponding pulsing
harvests can be carried over to the infinite horizon case
via limiting arguments. The high level argument is that
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theoptimal value functionCn(x) converges uniformly to
C(x) asn → ∞, while Pn(x) converges uniformly to
a functionP (x) asn → ∞. Given that by Theorem 1
Pn(x) is continuous andK-concave for alln, we have
thatP (x) must be also continuous andK-concave. Us-
ing an argument similar to the one developed in section
3.3 and by using Lemma 1, one can show that there ex-
istsS ands such that the optimal stationary policy for the
infinite horizon problem is an(S − s) policy.

6 Conclusions

In this paper, we have analyzed the optimality of(S − s)
polices for a fairly general class of stochastic discrete-
time resource allocation problems. When a non stationary
(S − s) policy is used, a harvest is undertaken at periodn
if and only if the current stock level is greater thansn; in
that case the stock is harvested down toSn. The frame-
work developed is quite general and can be applied to
problems arising in very different domains, such as natu-
ral resource management, crowdsourcing, pollution man-
agement. When assumptions of Theorem 1 are met, we
have shown that there exists a non stationary(S − s) pol-
icy that maximizes the utility in a worst case scenario.

A fundamental advantage of the game theoretic ap-
proach is that it completely avoids the problem of eval-
uating the probability distributions of the random vari-
ables describing the uncertainty affecting those systems,
a task that is difficult or even impossible to accomplish
in many practical circumstances. Given the consensus
reached by the scientific community on the importance of
understanding the role of uncertainty when dealing with
renewable resources, we believe that worst-case scenario
frameworks such as the one described here provide new
insights and will become increasingly important.

To contribute to the effort of the Computational Sus-
tainability community in tackling the fundamental sus-
tainability challenges of our time, we consider an appli-
cation of our model to a marine natural resource. This
type of natural resources are in fact widely believed to be
endangered due to over exploitation and generally poorly
managed. Using Gulf of Alaska Pacific halibut data from
the International Pacific halibut Commission (IPHC) an-
nual reports, we formulated a real world case study prob-
lem that fits into our framework. In particular, our ap-
proach defines a policy with a guaranteed lower bound on
the utility function that is structurally very different from
the one currently employed.

As a future direction, we plan to study the effects of
partial observability on the optimal policies by moving
into a POMDP framework. Moreover, we aim at extend-
ing the results presented here to the multidimensional case
by extending the theory on the so-called(σ, S) policies

from the inventory control literature.
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