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Abstract and unique aspect of such a resource type is the fact
that, by definition, its stock is constantly replenished by
In this paper* we introduce a class of Markov decisioran intrinsic growth process. The most common example
processes that arise as a natural model for many renewe perhaps living resources, such as fish populations or
able resource allocation problems. Upon extending ferests, that increase constantly by natural growth and re-
sults from the inventory control literature, we prove thgfroduction, but less conventional resources such as users
they admit a closed form solution and we show how ia a social community or in a crowdsourcing project share
exploit this structure to speed up its computation. the same intrinsic growth feature due to social interac-
We consider the application of the proposed frameworktions.
several problems arising in very different domains, and Ascommon feature of the growth processes presented is
part of the ongoing effort in the emerging field of Computhat they are density dependent, in the sense that the
tational Sustainability we discuss in detail its applioati growth rate depends on the amount of resource avail-
to the Northern Pacific Halibut marine fishery. Our apable. This fact creates a challenging management prob-
proach is applied to a model based on real world dalam when the aim of the intervention is to optimally use
obtaining a policy with a guaranteed lower bound on thiee resource, for instance by harvesting a fish population
utility function that is structurally very different froné or by requiring some effort from a crowdsourcing com-
one currently employed. munity, especially when economic aspects are factored in.
We face a similar challenge in vaccine distribution prob-
. lems, where the growth rate of infections is again density
1 Introduction dependent and the objective is to reduce its spreading.

. » . This study, in particular, has been motivated by the
The problem of devising policies to optimally allocatgjarming consideration that many natural resources are
resources over time is a fundamental decision theoreéﬁdangered due to over-exploitation and generally poorly
problem with applications arising in many different fie"jsmanaged. For instance, the Food and Agricultural Orga-
In fact, such decisions may involve a variety of differendiation estimates in their most recent report trzt of
resources such as time, energy, natural and financial f&yine fish stocks are already deplet&t, are recover-
sources, in allocation problems arising in domains as ?H‘g from depletion52% are fully exploited and 7% are
verse as natural resources management, CrOstourCH‘\/érexploited ([1]).
supply chain management, QoS and routing in networksOne of the most fundamental aspects of the problem

Xaccn;e dI:rtI”pz::aorg;nnd pc?!g;l%? ?iﬂagrirl;]lim.s ivol esseems to be the lack of an effective way to handle the un-
particutarly | ng uch p Involv Certainty affecting the complex dynamics involved. While
policies for the allocation ofenewable resourcedA key

in most of the works in the literature [6, 7] these growth
LThis paper is already published in the Proceedings of theeen- Processes are modeled with deterministic first-order dif-
ference on Uncertainty in Artificial Intelligence, Cataitsland, 2010 ference or differential equations, this approach often rep




resents an oversimplification. In fact their intrinsic gtbw mization problem in a traditional form as a maximization
is often affected by many variables and unpredictable faif-an expectedutility, we tackle the management prob-
tors. For example, in the case of animal populatiotems in a game theoretic framework, where the optimiza-
such as fisheries, both weather and climate conditions to@ problem is equivalent to d@ynamic game against na-
known to affect both the growth and the mortality in theure. This formulation is a particular type Markov game
population. Other variable ecological factors such as tHel] (sometimes called atochastic gamgl16]) where
availability of food or the interaction with other speciethere are only two agents (the manager and nature) and
also influence their natural dynamics to the point that itikey have diametrically opposed goals.
very difficult even to obtain reliable mathematical models As mentioned before, although this formulation is more
to describe their dynamics. conservative, it also eliminates the very difficult task of
On the other hand, stochastic differential equations castimating the probabilities of the stochastic events af-
easily incorporate these variable factors and therefqre réecting the system. In a context where the emphasis in
resent a more robust description. However, obtaininglee literature has traditionally been on the study of ex-
probabilistic description of such systems is far from eagjected utilities, this approach represents a new perspec-
In fact, even if in principle uncertainty could be reducetive. Moreover, the policies thus obtained provide a lower
by collecting and analyzing more data, it is generally bbound on the utility that can be guaranteed to be achieved,
lieved that complex and stochastic systems, such a ma-matter the outcomes of the stochastic events. For this
rine environments, could never become predictable (to #tlass of problems, we are able to completely characterize
point that the authors of [13] believe that “predictability the optimal policy with a theoretical analysis that extends
anything as complex as marine ecosystem will forever me@sults from the inventory control literature, obtaining a
main a chimera”). closed form solution for the optimal policy.
Moreover, there are situations of “radical uncertainty” As part of the new exciting research area of Computa-
([8]) or ambiguity where a stochastic description is neional Sustainability ([10]), where techniques from com-
feasible because the probabilities are not quantifiable. ater science and related fields are applied to solve the
instance, many fundamental environmental issues thatpvessing sustainability challenges of our time, we present
are facing, such as those surrounding the climate chaageapplication of the proposed framework to the North-
debate, involve ambiguity in the sense of scientific coeen Pacific Halibut fishery, one of the largest and most
troversies or irreducible beliefs that cannot be resolvedlucrative fisheries of the Northwestern coast. In particu-
In the context of stochastic optimization, there are twar, our method suggests the use of a cyclic scheme that
main ways to deal with uncertainty. The first one involvegvolves periodic closures of the fishery, a policy that is
arisk managemerdpproach, where it is assumed that tigructurally different from the one usually employed, that
probabilities of the stochastic events are known a priori iwstead tries to maintain the stock at a given size with ap-
are learned from experience through statistical data artiopriate yearly harvests. However, this framework is in-
ysis. Within this framework, decisions are taken accortbresting in its own right and, as briefly mentioned before,
ing to stochastic control methods. Using tools such é&gpplies to a variety of other problems that share a simi-
risk-sensitive Markov decision processes ([12, 15]), it igr mathematical structure and that arise in very different
also possible to encode into the problem the attitude @emains. For example, we can apply our framework to
wards risk of the decision maker by using an approprigiellution problems, where a stock of pollutants is evolv-
utility function In particular the degree of risk aversioring over time due to human action, and the objective is
can be controlled by sufficiently penalizing undesirabte minimize the total costs deriving from the presence of
outcomes with the utility function. When a fine grained certain stock of pollutants and the costs incurred with
stochastic description is not available, worst-case gagleanups, but also to crowdsourcing and other problems.
theoretic frameworks, that are inherently risk aversey pla
a fundamental role because it is often crucial to devise
policies that avoid catastrophic depletion. This type @ MDP Formulation
approach, where the problem of data uncertainty is ad-
dressed by guaranteeing the optimality of the solution fr this section, we will formulate the optimization prob-
the worst realizations of the parameters, is also knowniéin as discrete time, continuous space Markov decision
the literature asobust optimizatior([3, 5]), and has beenprocess. Whenever possible, we will use a notation con-
successfully applied to uncertain linear, conic quadratigstent with the one used in [4]. Even if we will consider
and semidefinite programming. only a finite horizon problem, the results can be extended
In this paper, we present a class of Markov decisido the infinite horizon case with limiting arguments. To
processes that arise as a natural model for many resounake the description concrete, the model will be mostly
management problems. Instead of formulating the opdiescribed having a natural resource management problem



in mind. 2.1 Resource Economics

We consider a dynamical system evolving over time

cording to a\9\le now consider the economic aspects of the model. We

suppose that the revenue obtained from a hatvespro-
Tpy1 = f(@n — B, wy), (1) portional toh through a fixed price, and that harvesting
is costly. In particular we assume that there is

wherez,, € R denotes the stock of a renewable resource
at timen. By using a discrete time model we implicitly
assume that replacement or birth processes occur in reg-
ular, well defined “breeding seasons”, whéfie) is are- ) )
production functiorthat maps the stock level at the end of ® @ marginal harvest cogtx) per unit harvested when
one season to the new stock level level at the beginning of the stock size is

the next season. The control or decision variable at year B )

n is the harvest level,, (occurring between two consec-!t follows that the utility derived from a harvestfrom an

utive breeding seasons), that must satisfy h,, < z,,. nital stockz is

As mentioned in the introduction, the functigf) cap- z A
tures the intrinsic replenishment ability of renewable re?h — / 9(y)dy — K = R(x) — R(z — h) — K, (3)
sources, that in many practical applications (such as fish- vh
eries or forestry) is density dependent: growth rate is higfpere
when the habitat is underutilized but it decreases when
the stock is larger and intraspecific competition intensi- *
fies. Specific properties of reproduction functiofis) R(z) = px _/0 9(y)dy.
will be discussed in detail later, but we will always as-
sume that there is a finite maximum stock level denot®de assume that the marginal harvesting cgst) in-
by m. creases as the stock sizedecreases. We include time
To compensate for the higher level description of the coqreference into the model by considering a fixed discount
plex biological process we are modeling, we introduce ufactora = 1/(1 +6) (0 < a < 1), whered > Ois a
certainty into the model througts,,, a random variable discount rate
that might capture, for example, the temperature of theror any given horizon lengtV, we consider the prob-
water, an uncontrollable factor that influences the growgm of finding anadmissible policyr = {uitien,n) that
of the resource. Given the worst case framework we afximizes
considering, we will never make assumptions on the prob-

e a fixed set-up cosK each time a harvest is under-
taken

ability distribution of w,, but only on its support (or, in Ch(x) =
other words, on the possible outcomes). In fact in an ad- N
versarial setting it is sufficient to consider all possilde-s min Z o (R(2y) — Rz — hn) — Kbo(hn))
narios, each one corresponding to an action that natuge;,..., wy =1

can take against the policy maker, without assigning them;, € W (x;)
a weight in a probabilistic sense.

Given the presence of stochasticity, it is convenient wherez,, is subject to (1) and,, = p,(x,,), with initial
consider closed loop optimization approaches, where denditionz; = = and
cisions are made in stages and the manager is allowed to
gather information about the system between stages. In So(x) = { 1 ifz> O
particular, we assume that the state of the systgra R 0 otherwise.
is completely observable. For example, in the context
of fisheries this means that we assume to know exacfljis is a Max-Min formulation of the optimization prob-
the level of the stocks, when the harvest level,, is lem, where the goal is to optimize the utility in a worst-
to be chosen. In this context,mlicy is a sequence of case scenario. As opposed to the maximization ofan

rules used to select at each period a harvest level for eaegtedutility ([17, 18]), this formulation is inherently risk
possible stock size. In particular, aaimissible policy averse. Anadvantage of this formulation is that there is no

7w = {u1,...,un} is a sequence of functions, each onkeed to characterize the probability distribution of the ra
mapping stocks sizesto harvests:, so that for alk: and dom variablesw; explicitly, but only to determine their
for all 5 support. In fact, one should consider all the possible sce-
narios, without worrying about the probabilities of their
0 < pi(x) < = (2) occurrence.



3 Main Results To examine this kind of relationship it is useful to intro-
duce the notion of{ -concavity, a natural extension of the
3.1 Minimax Dynamic Programming K-convexity property originally introduced by Scarf in

19] to study i t trol probl .
A policy 7 is called an optimalN-period policy ifC%, (x) [19]to study inventory control problems

attains its supremum over all admissible policieg dbr

all z. We call 3.2 Preliminaries on K-concavity
Cn(z) = sup C% (), A function 3(-) is K-concave if given thrge ppints <
mell y < z, B(y) exceeds the secant approximation@)

the optimal value functionwherell represents the set of?bta'nid usmgl thi PO'TF(I)J Kdand/é’(z). There:ore
all admissible policies. or K = 0 no slack is allowed and one recovers the stan-

As a consequence of the principle of optimality([4])(,j
the dynamic programming equation for this problemefinition 1. A real valued functior(-) is K -concave if

ard definition of concavity. Formally

reads: forall z,y, z <y, and forallb > 0
Co(r) = 0, By +b) — Bly)
_ (XL L PN~
Cp(z) = o max méII}V R(zy) — R(xy, — hy) Blz) = Bly) = (= y) b sk
:K%; (hn) + aCr1 (f (2 — b, wn)) We state some useful results concernitigconcavity:

foralln > 0. The latter equation can be rewritten in termseémma 1. The following properties hold:

of the remaining stock = x—h,, (the post decision state) e A concave function ig-concave and hence-

as concave forallK > 0.
Crn(z) = a max )
0<z<a e If 51(¢) and 32(q) are respectivelyk;-concave and
. K>-concave for constants; > 0 and K, > 0, then
R(z) — R(2) — Kéo(x — 2) + Ch wn)) ) 2 _ 1= 22U
( (@) — R(z) of@ =) + min Cnoa(f(zw D) aB1(q) + bBa(q) is (aK, + bK,)-concave for any

4) scalarsa > 0 andb > 0.

This formulation of the problem is effectively analogous e |f B(-) is nondecreasing and concave oh

to agame against natura the context of a two-person and v(-) is nondecreasing andk-concave on

zero-sum game. The objective is in fact devising the value [inf,er B(), sup,e; B(x)] then the compositiort o

of z that maximizes the utility, but assuming that nature 3 js K-concave orl.

is actively playing against the manager with the opposite

intention. o LetBi(z),...,Bn(z) be a family of functions such
It can be shown (see [4]) that, (), the revenue func-  that/ji(z) is K;-concave. Then(z) = min, §;(x)

tion associated with an optimal policy, is the (unique) so- IS (max; K;)-concave.

lution to equation (4). From equation (4) we see that an

optimal policy, when there areperiods left and the stock

level isx, undertakes a harvest if and only if there exists

0 < z < z such that

e If 8(-) is a continuous K -concave function on the
interval [0, m], then there exists scalafs < S <
s < m such that

- B(S) = B(g) forall g € [0, m].

— Eithers = mandB(S)—K < B(m)ors <m
e mén Cr1(f(x,wp)). and 5(S) — K = B(s) > p(q) for all ¢ €
on [s,m).
— f(+) is a decreasing function o, m].
—PForallz <y <s, B(z) — K < B(y).

R(z) = R(z) = K +a min Gy (f(z,wn)) >

In fact, an action should be taken if and only if its asso-
ciated benefits are sufficient to compensate the fixed cost
incurred. By defining

_ . The proof is not reported here for space reasons, but can
P,(zx)=—-R Ch— ,Wn)), . L .
() (@) + awlzlér‘}v 1(f (s wn)) ®) be found in [9]. Similar results fof{-convex functions

we have that an optimal policy, when there arperiods are proved in [4].

left and the stock level ig, undertakes a harvest if and In the fqllow]icnﬁ s?ctiorj we will prove by inductio;the
only if there exists) < z < = such that K-concavity of the function®,(z), n = 1,..., N. This

will allow us to characterize the structure of the optimal
P,(z) — K > P,(z). (6) policy by using the last assertion of Lemma 1.



3.3 On the Optimality of (S — s) policies ~ numberk such that

Suppose that we can prove that(x) is continuous and (K+7)a<k<K. (9)
strictly K-concave. Then by Lemma 1 there exiSts s,,
with the properties proved in the last point of the Lemmahe proof is by induction oriV. The base cas® = 0
It is easy to see that condition (6) is satisfied only i§ trivial becauseCy(z) = 0 for all z, and therefore it
x > s, in which case the optimal value of the remaininig continuous, nondecreasing aheconcave. Now we
stock z would be preciselys,,. In conclusion, if we can assume that’,,(z) is continuous, nondecreasing akhd
prove the continuity ands-concavity of the functions concave, and we show th#t,.(z) is continuous and
P,(x),n = 1,..., N, then following feedback control K-concave, and that,,, ; (z) is continuous, nondecreas-
law, known as a nonstationafyg — s) policy, is optimal: ing andk-concave.

Since f(-,w) is nondecreasing and concave for all

At periodn, a harvest is undertaken if and only if the&,, (f(z,w,,)) is K-concave by Lemma (1). By Lemma 1
current stock level is greater thar,; in that case the
stock is harvested down 19),. wmél‘}v Cn-1(f(2,wn))

This policy is known in the inventory control literaturés also K-concave. Again using Lemma 1, #R(z) is
as a nonstationaryS — s) policy 2, because the levelsconcave, then by equation (3},,1(z) is K-concave.
S, ands, are time dependent. Since it is assumed thEf€ continuity of P, () is implied by the continuity
the marginal harvest cog{z) is a non increasing func-9f Cn(z) andR(x).

tion, we definez, to be the zero profit level such thap_i"eln th"_"tpﬁl(x%is K -codncave and c;]?ntiguoTs,_]:[hﬁ op-
g(z0) = p. If g(z) < p for all z, we definer, — 0. As _1imal action is to harvest down 18,,.., if and only if the

a consequence for all > z, we have that(x) > 0 50 current stock level is greater thap, ;, so we have

that R (defined in equation (3)) is non decreasing. More- a(Poy1(z) + R(2)) if 2 < Spi,
over if the marginal harvest cogtx) is a non increasing Crii(z) = { a(Pps1(Sni1) + R(x) — K)  if &> spy1.
function, thenR is convex. (10)

We also need to make an assumption on the concavitye continuity ofC;, 1 (x) descends from the continu-
of R(-). In particular the marginal cost functionis al- ity of P,;1(z) and because by definitioR, 1 (sn+1) +
lowed to decrease but not by too much. kebe an upper R(sn+1) = Pug1(Snt1) + R(sn41) — K. To show it is
bound on the possible valuesoBndG(z) = [; g(t)dt, nhondecreasing, consider the cas€ z1 < z2 < sy

then we need
Cn+1(372) - Cn—i—l(ml) =

T=G(m)—mg(m) < K (1 ;a) ; @ o ( min Cy,(f(z2,wy,)) — min Cn(f(xhwn)))

wp €W wp €W
a condition that implies the-concavity ofR. If for all 2o > 2, > 0,
The main result is the following theorem, where we
show that if some assumptions are satisfied, the optimal min  f(zy,wy) > min  f(xy,wy,),

policy is of (S — s) type. The key point of this induc- wn €W (2) wn€W(a1)

tive proof is to show that thK—concgvity property is pre- thenCu 1 (2) — Ci1(21) > 0 because’, (z) is nonde-
served by the Dynamic Programming operator. creasing. For the case 1 < 1 < x5 ands,+1 > zo:
Theorem 1. For any setup cosk > 0 and any posi- B _ B

tive integerNV, if f(-,w) is nondecreasing and concave Cnt1(w2) = Cnga() = alfi(wz) = Rla)) 2 0,

for anyw and if g is non increasing and satisfies condibecauser is nondecreasing on that interval. It must be the
tion (8), then the function®,(z) defined as in (5) are case thatS,,.; > x, because harvesting belaw is not
continuous and<-concave for allh = 1,..., N. Hence profitable and reduces the marginal growth of the stock, so
there exists a non-stationarys — s) policy that is opti- given thats,.,; > S, 11 > zo we conclude tha€’,, ()

mal. The resulting optimal present value functiéiigz) IS nondecreasing. It remains to show that, () is k-

are continuous, nondecreasing ard-concave for all concave, and by equation (9) it is sufficient to show that
n—1 N itis (K + 7)a-concave. To show that definition (7) holds

for C,,+1 (), we consider several cases.
Proof. From equation (8) we know that there exists Whenz <y < s, according to equation (10) we have
a ® thatC),11(x) = a(P,+1(z) + R(z)) and therefore equa-

2For the sake of consistency, we call the threshold value that gov- tion (7) h_OldS by Lemma_l _becau%élﬂ is K-concave
erns the decision, even if in our casg < s,. and R(-) is 7-concave. Similarly whes,,+1 < z < y,




equation (7) holds becaus¥-) is 7-concave. 5 Case Study: the Pacific Halibut
Whenz < s,41 < y equation (7) reads
As part of the ongoing effort in the emerging field of Com-
putational Sustainability, we consider an application of
Cn1(2) = Ona ) = (@ =9) our framework to the Pacific Halibut fishery.
o (K ¥ R(z) — R(y) — (z —y) R(y+0b) — R(y)) < The commercial exp!oitation of the Pac_ific halibut on the
b Northwestern coastline of North America dates back to
a(K + 7). the late 1800s, and it is today one of the region’s largest
and most profitable fisheries.The fishery developed so
because’, 1 (z) < Pn11(Sn+1) andR(-) is T-concave. quickly that by the early 20th century it was starting to
O exhibit signs of overfishing. After the publication of sci-
entific reports which demonstrated conclusively a sharp
decline of the stocks, governments of the U.S. and Canada
4 Consistency and Complexity signed a treaty creating the International Pacific Halibut
Commission (IPHC) to rationally manage the resource.
Even if Theorem 1 completely describes the structure Bf€ |PHC commission controls the amount of fish caught
the optimal policy, in general there is no closed form sgnually by deciding each yeartstal allowable catch
lution for the values ofS,, ands,,, that need to be com-(TAC), that is precisely the decision variablg, of our
puted numerically. In order to use the standard dynan@gtimization problem.
programming approach, the state, control and disturbance
spaces must be discretized, for instance using an eveblf Management Problem Formulation
spaced grid. Since we are assuming that those spaces ar

bounded, we obtain in this way discretized sets with a fi? develop a bioeconomic model of the fishery, we have

nite number of elements. We can then write DP like equ%fftragtiq datd frohm the IPHCdar;fnuaI reports onde.stl-
tions for those points, using an interpolation of the valjpated biomass, arvesth; and effortE; (measured in

function for the points that are not on the grid. The equ_g'-Ousands of skate soaks) for Area 3A (one of the ma-

tions can be then solved recursively, obtaining the sedfif regula_tory areas in which waters are divided) f(ji?)a_
optimal action to be taken for each point of the grid, th¥f2rs period from 1975 to 2007. To model the population
can then be extended by interpolation to obtain an appr namics, we conS|der_the BeV(_arton—HoIt model that uses
imate solution to the original problem. the following reproduction function

As with all discretization schemes, we need to discuss Zni1 = f(sn)
the consistencyof the method. In particular, we would il "
like (uniform) convergence to the solution of the original

problem in the limit as the discretization becomes finer, }{'€"€sn = @n — hn i the stock remaining after fishing

is well known that in general this property does not hol&e_scap.emen.t) In year. This mpdel can be co_ngdered
However in this case Theorem 1 guarantees the contintﬂ?}/a discretization of the continuous-time logistic equa-
of C,, that in turn implies theonsistencyf the method, U nﬁ_ Herte, paraml)etqmt repretsznts a naturag mt(_)rtalltyt
even if the policy itself is not continuous as a function (ﬁoz ]\';'en o €an be tlrr: erpreted as a re_:orofl:;]: 'on rate
the state([4]). Intuitively, discrepancies are possibiyo 2" (ZO Tl'r:r )/m is the carrtyllr)tg cap?fc_;l Y Ot € envi-
around the thresholsl,, so that they tend to disappear aPnment. N .(a priori) mortali y coetlicient we use 1
the discretization becomes finer. m = 0.15, that is the current working value used by the

The standard dynamic programming algorithm i IFHC' The va!qes of andM ar.e estimated by ordinary
volves O(|X||W||U||T]) arithmetic operations whergeaSt square fitting to the hl_storlcal data._Estlmqted &lue
) / : ' thus obtained are reported in table 1, while the fitted curve
|X| is the number of discretized statéB/| the number is shown in figure 1
of possible outcomes of the (discretized) uncontrollabFeFouowing [18] wé suppose that the system is affected

e"e_”‘SJU‘ the maximum ngmber O.f possible dls_cretlzegy stochasticity in the form of seasonal shoeks that
actions that can be taken in any given state @nd the . .
influence only the new recruitment part

length of the time horizon. However, the priori knowledge
of the structure of the optimal policy can be used to speed
. L . ) T = f(sn,wn) = (1 —m)s, +wy,
up the computation. In fact it is sufficient to find(for ="' Fsnwn) = )80+
example by bisection) and compute the optimal control . o e
associated with any state larger completely char- Instead c_)f assuming an a priori probabll!ty distribution fo
acterize the policy for a given time step. The complexifLﬁ” or trying to learn one from data (that in our case would
of this latter algorithm i) (|W||U||T'| log | X|). 3Data is available from the authors upon request.

Crnt1(y +5) = Cota(y) _
2 <

T0Sn

_ 11
e @

=(1—m)sy,

T0Sn

1+ s,/M (12)




squares fitting are reported in table 1, while the resulting
=  curve is compared with historical data in figure 1.
] Costs involved in the Halibut fishery are divided into two
.| categoriesfixed costandvariable costs Fixed costs in-
\/ { clude costs that are independent of the number and the
\ duration of the trips a vessel makes (therefore generically
independent from the effoit;). For example, vessel re-
pairs costs, license and insurance fees, mooring and dock-
{ age fees are typically considered fixed costs. We will de-
1 note with K the sum of all the fixed costs, that will be
1 incurred if and only if a harvest is undertaken.
1 Variable costs include all the expenses that are depen-
e T = dent on the effort level. Variable costs typically include
fuel, maintenance, crew wages, gear repair and replace-
ment. We assume that the total variable costs are propor-
tional to the effortE), (measured in skate soaks) accord-
Figure 1: Fitted models (11) and (13) compared to histag to a constant. Parametet: is set t0200, 000$ for
ical data (in bold). 1000 skate soaks200$/skate) as estimated in [2]. Fol-
lowing the analysis of the historical variable and fixed

not be feasible given current scarce data availability), @sts for the ha"b?t fishery carriehd on i.n [1,1]’ v¥e ars]sume
will make use of the framework developed in the previoq;g I'z 52000’000$ or area/ 3A6' The gn't pr|.c¢;20r the
sections. In particular we will (a priori) assume that "2 “ft Ishset t01a300,00(f)_$ 10 pounds, as in [2].

are random variables all having the same finite suppHrYVG_ urther assume a ixed discount rate= 0.05, we
that we will learn from data, but we will not make anfbta'n aformulaﬂon of management problem for the Hal-
assumption on the actual weight distribution. With odqu f|sh(_ery n Areg SA that T'ts into the .framework de-
data, we obtain that,, € [1 — 0.11, 1 + 0.06] = I,,. scribed in the previous section. In particular, the prob-

For the economic part of the model, we start by modé?—m for anV years horizon is that of finding an admis-

ing the relationship between a harvéstthat brings the sﬂgle policyr = {u:}iep1,n) that maximizes the revenue
population level fromz; to z; — h; and the effortE, Cx(x) wherex7,,x|slsubject to (12)hn = pa(zn) and
needed to accomplish this result. We will a priori assumi&®) = P — ¢Jy grdy-
that there is anarginal effortinvolved, so that
T q 5.2 Optimal Policy
E, = —dy (13) _ _ _
x—h, 9Y By using the dynamic programming approach on the

i i i i 6
for someq and b. This is inspired by the fact thatProblem discretized with a step size®25 x 10° pounds,

less effort is required when the stock is abundant, alf§ compute the optimal policy for a management hori-
can also be interpreted as an integral of infinitesim@®n Of IV = 33 years, that is the length of our original
Cobb-Douglas production functions (a standard econorfiff€ Series. As predicted by Theorem 1, the optimal pol-
model for productivity) whereb and ¢ are the corre- I¥ 7 = {#1,..., v} for the model we constructed for

sponding elasticities. Estimated values obtained by le35¢2 3A is @ non stationafp — s) policy. In figure 2(a)
we plot the functiornu, () to be used in the first year (the

values ofS; ands; are133 and176.75 respectively). In

N

o

S
T

hist. stock

=

15

=}
T

est. stock
hist. effort

.

1)

S
T

Effort (1000 sk. soaks Stock(10"6 pounds
a
S

—

Parameter Value words, the optimal policy dictates that at period har-

q 9.07979 107 vest is to be undertaken if and only if the current stock

b 2.55465 level is greater thas,,; in that case the stock is harvested

D 4,300, 000% / (10° pounds) down toS,,.

K 5,000, 000% The trajectory of the system when it is managed using

c 200, 000$ / 1000 skate soaks the optimal policy is shown in figure 2, together with the

g 0.05 corresponding optimal harvests. As we can see, the opti-

m 0.15 mal policy ispulsing in the sense that it involves periodic

M 196.3923 10° pounds closures of the fishery, when no harvest should be under-

To 0.543365 taken so that the fish stock has time to recover. Of course,
this kind of policy could be acceptable in practice only in

Table 1: Base case parameter set. combination with some rotation scheme among the dif-



500 Optimal policy and escapement POllcy Disc. revenue $) Loss ($)

‘ ‘ ‘ ’—‘hgrvw OptimalS —s | 9.05141 x 10® —
4sor escapementy Historical rates | 7.06866 x 10° 1.98275 x 10%
400 Average CPP | 6.51849 x 108 2.53292 x 108
ss0( Rolling Horizon | 8.73605 x 108 3.1536 x 107

300

sl Table 2: Policy Comparison

200

stock (106 pounds)

Optimal state and control trajectories with rolling horizon
200 T T T T T T

150 s
1001 i 180
ol i 160+
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0 100 200 300 400 500 600

stock
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(a) Optimal rule for selecting harvests in the first year. 1001

80

stock (106 pounds)

Optimal state and control trajectories 60
T T T T

40t

201

0 a a a a

— 0 5 10 15 20 25 30 35
§ 120 stock time (years)
ch —=© harvest
03 100
% sl Figure 3: Harvests and stock trajectory with the rolling
2 horizon strategy.
60
401
200 ] revenues for the optimdlS — s) policy are abouB5%
0 o o o - higher, as reported in table 2. Notice that the comparison
0 5 10 15 20 25 30 35

is done assuming a worst case realization of the stochas-
ticity, or in other words that the nature is actively playing
against the manager.

Notice that the large harvest prescribed by the optimal
(S — s) policy in the last year is an artifact of the finite
horizon effect, caused by the fact that there is no reason
, not to exhaust the resource at the end of the management
ferent_ Areas, so that a constant yearly production can ll&?rizon (as long as it is profitable to harvest it). However
sustained. it does not affect the comparison significantly due to the

This scheme is very different from the Constant Preiscount rate. In fact the (discounted) revenue for the en-
portional Policy (CPP) that has been traditionally used {ige |ast large harvest only accounts for less tR%nof the
manage the Halibut fishery. In fact a CPP works by choqgta| revenue. This is confirmed by looking at the results
ing the yearly TAC as a fixed fraction of the current stocytained with a rolling horizon strategy that always picks
level z, and is aimed at maintaining the exploited stogke optimal action with 43-years long management hori-
size (the escapement) at a given fixed level. This poligyn in mind. As shown in figure 3, this (suboptimal) strat-
can be seen as a simplified version of(@h— s) policy eqy is not affected by the finite horizon effect. The rolling
where the two levels do not depend on the stagend horizon strategy still involves periodic closures of thafis
coincide, thus defining the target stock size. ery and significantly outperforms the historical policies,

To see the advantage of the optiniél— s) policy, we as reported in table 2.
compare it with the historical harvest proportions and with To further clarify that the pulsing nature of the optimal
a CPP policy that uses the historical average harvest nag@vests is not an artifact of the finite horizon, it is also
a = 0.1277. Table 2 summarizes the discounted revenugseresting to notice that the theoretical results on the op
corresponding to an initial stock sizg = 90.989 million  timality of (S — s) policies and the corresponding pulsing
pounds, that is the estimated stock size in 1975. harvests can be carried over to the infinite horizon case

Compared to the historical policy or the CPP policyja limiting arguments. The high level argument is that

time (years)

(b) Stock trajectory and corresponding optimal harvests.

Figure 2: The optimal policy.



the optimal value functior,, () converges uniformly to from the inventory control literature.

C(z) asn — oo, while P,(x) converges uniformly to

a function P(z) asn — oo. Given that by Theorem 1

P,(z) is continuous ands-concave for alln, we have / Acknowledgments

that P(x) must be also continuous arid-concave. Us-

ing an argument similar to the one developed in sectidhis research is funded by NSF Expeditions in Comput-

3.3 and by using Lemma 1, one can show that there &g grant 0832782.

ists S ands such that the optimal stationary policy for the

infinite horizon problem is anS — s) policy.
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