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Sole-Mauri1

1 Dpt. of Computer Science, Universitat de Lleida, Spain
2 IIIA-CSIC, Spain

Introduction

Automated vacuum waste collection (AVWC) uses air suction on a closed network of
underground pipes to transport waste from the drop off points scattered throughout the
city to a central collection point, reducing greenhouse gas emissions and the inconve-
niences of conventional methods (odors, noise, . . . ). Since a significant part of the cost
of operating AVWC systems is energy consumption, we have started a project with the
aim of applying constraint programming technology to schedule the daily emptying
sequences of the drop off points in such a way that energy consumption is minimized.

In this paper we define AVWC systems, encode the problem of deciding the drop
off points that should be emptied at a given time as a constraint integer programming
(CIP) problem, and empirically evaluate our approach with real data.

Our paper is a step forward in solving the challenge posed in [1], and extends the
results of [2] by dealing with a limited but complete set of sectors, and by making
decisions taking into account subsectors instead of individual drop off points. This way,
we obtain simpler models that achieve good quality real-time solutions. Furthermore,
we include experiments with real data that were beyond the reach of [2].

AVWC systems and its optimization problem

An AVWC system is defined by a set {T , I,F ,Va,Vs}, where T (N , E) is a rooted
binary tree with nodes (N ) representing either inlets (I) or pipe junctions, and edges (E)
correspond to union pipes between nodes; F is the set of waste fractions; Va is the set
of air valves, located at some inlets for creating air streams able to empty downstream
inlets; and Vs is the set of sector valves that segment the whole tree defining isolated
sectors (s). Sectors are subtrees of T , always containing the root node and a subset of
I (Is). Each inlet in I is denoted by If

i (f is the fraction), meanwhile va
i and vs

i denote
air and sector valves, respectively (see Fig. 1).

Each inlet is associated with three subtrees: (i) the emptying subtree (T E
i ) is the

path that waste must follow from inlet i to the root node (central collection point);
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Fig. 1. Schematic example of an automatic vacuum waste collection plant

(ii) the air subtree (T A
i ), where T E

i ⊆ T A
i , being equal if inlet i has an air valve; and

(iii) the vacuum subtree (T V
s ) that represents the total amount of air to be moved before

proceeding to waste transport.
Let Lf

i be the waste occupancy of an inlet If
i at the beginning of slot time t. Given

a sector s and fraction f , a valid emptying sequence Ef,s
t = [If

i1
, If

i2
, . . .] is an ordered

subset of the inlets in sector s such that the total waste to be emptied does not exceed a
maximum transfer capacity (Lf

max):
∑

If
i ∈E

f,s
t
Lf

i ≤ Lf
max.

The energy consumption of an emptying sequence depends on the air speed oper-
ation (vt), which is constant for each sequence, and the operation time (Tt), which is
the time required to operate an emptying sequence. The operation time is divided into
two phases. In the transitory phase the previous speed (vt−1) changes progressively to
vt in time T tr

t , and in the stationary phase the selected emptying sequence is executed
in time T st

t .
Energy can also be split into two parts: transitory (Etr

t ) and stationary (Est
t ). In

the transitory part, there is only energy consumption for the process of increasing air
speed. In the stationary part, for the same emptying path, the minimum transport energy
is obtained when the shortest air path is employed, that is, opening the upstream air
valve closest to the inlet being emptied. The type of fraction also affects the power
requirements, needing more energy those types of fraction more dense. Under these
considerations, the contribution to the stationary energy of an inlet If

i of the emptying
sequence is proportional to its air path (T A

i ) and to its transport time up to the next
intersection.

The AVWC optimization problem consists in finding a set of emptying sequences
and air speed operations, {Ef,s

t } × {vt}, 0 ≤ t ≤ T , for a period of time T (e.g. a
day), that minimizes the energy cost:

∑T
t=0 fc(t) · (Etr

t + Est
t ), where fc(t) depends



on time and energy fares. Also, at the end of the period T , the residual load Lf
i of inlet

If
i should be below a lower bound εfi .

In this paper we only deal with the problem of selecting an optimal emptying se-
quence on a given time slot t, leaving as future work the problem of optimizing over a
full period of time T , i.e. the dynamic continuous problem. The problem at time t will
be subject to the following hard constraints and conditions:

– The emptying sequence Ef,s
t is valid:

∑
If

i ∈E
f,s
t

Lf
i ≤ L

f
max.

– The air speed is between a minimum (V f
i ) for each inlet and a maximum (VM ):

maxIf
i ∈Is(V

f
i ) ≤ vt ≤ VM .

– Any inlet If
i with a load Lf

i over a threshold thf
i should be included in the emp-

tying sequence. Given that it may not be possible to include all the inlets that are
overloaded, we force the inclusion of the maximum number of such inlets by a
penalty term in our objective function.

The CIP encoding

Our CIP encoding is a variant of the encoding in [2], which is simpler but produces
good quality real-time solutions in large AVWC systems. The main differences are:

– Both encodings do not consider all the possible valid sectors that can be obtained
by closing and opening the valves in Vs. They just select a subset of those sectors,
but now we introduce the notion of subsector. A subsector is a subset of inlets
belonging to a sector, and from the encoding point of view, subsectors are encoded
as sectors. As all the subsectors of a given sector have the same Vs configuration,
all of them present the same T V

s as the sector s which they belong to.
– The new encoding only considers the inlets with a load above a threshold (40% in

our experiments).
– The ability to define disjoint and small subsectors reduces the number of variables.

The worst-case number of variables of our encoding depends quadratically on the
number of inlets per sector.

Experimental Results

As an example, we applied our CIP encoding to a real AVWC system with 5 sectors,
36 drop off points, 124 inlets and 4 fractions. We used real drop off data of the most
and the less loaded day in the season, representing a transport of 39.4 m3 and 31.8 m3,
respectively. Each daily data set has 288 inputs corresponding to an inlet volume load
sampling rate of 5 minutes. The encoding was solved with SCIP version 2.1.1[3] with
SoPlex 1.6 and default settings, in a 2.66 GHz processor. The timeout was set to 5
minutes, and the maximum load of the system to 1 m3.

Figure 2 is a histogram of the time needed to solve the instances. Each one of the
daily data (high and low load) is solved, first, according to the sectors defined for the
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Fig. 2. Histogram of time to solve on a real AVWC system

topology, and second, adding some subsectors. Actually, only two subsectors are de-
fined on two different sectors. As shown, most of the instances are optimized in a few
seconds, being the subsectorized problems even more efficient. Even for those instances
reaching the time out, the solver is always able to find a good near optimal solution, as
the relative difference between the primal and dual bounds (mean gap value) indicates.
Such a good encoding performance indicates that our solving approach could be a fun-
damental part of a planning algorithm, maybe based on dynamical programming, that
works over a daily time horizon, allowing an efficient learning based on historical inlet
disposal data, as well as an optimal, or near-optimal, real time decision algorithm.

References
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