Managing Invasive Species in a River Network

Kim Hall, Majid Alkaee Taleghan, H.J. Albers, Mark Crowley, Tom Dietterich
Oregon State University
CompSust at OSU

- **eBird** – learning species distribution patterns from citizen science data
- **BirdCast** – predicting bird migration patterns
- **BudID** – automated categorization of bugs from image data
- wildlife corridor planning
- data cleaning for forest sensor networks
- forest fire control
- controlling invasive species
The Problem

- Managing plant ecosystem along a river network
- Competing native and invasive plant species
- Native and Invasive species spread dynamics
 - Local, spatial, stochastic
- Optimize for best outcome subject to budget constraints
Example River Network

- Slot States
 - Native plants, invasive plants, empty

- Actions in each Reach
 - Eradicate invasive plants
 - Eradicate and restore (replant) natives
 - Do nothing
States and Actions

• Slot States
 • Native plants, invasive plants, empty

• Actions in each Reach
 • Eradicate invasive plants
 • Eradicate and restore (replant) natives
 • Do nothing
Where We Fit In

- **Ecology**: focus on biological processes, postulate complete eradication (may be economically infeasible)

- **Economics**: focus on optimal control policy
 - Spatial spread often ignored/simplified greatly
 - Steady state analysis of spatial spread

- **Econ + CS**: Collaboration between Ecosystem Economics and Computer Science
 - Spread modelled as a conditional, spatial, stochastic process
 - Optimized as an MDP
 - Structure of the problem presents interesting computational challenges
Goal

Optimal policy describing placement of management actions over space and time

Economic Optimization

• Objective: reduce presence of invasive plants while minimizing costs
• Subject to annual management budget constraints and ecological processes
Optimization Problem

\[
\min_{a_{it}} \sum_{t} \sum_{i} \gamma^t c_{it}(n_{it}, a_{it})
\]

s.t. \[
\sum_{i} c_{it}(n_{it}, a_{it}) \leq b_t \forall t
\]

s. t. ecological model holds

Where:

\(\gamma \) Discount factor
\(c_{it} \) Cost function
\(n_{it} \) Invasive population size
\(a_{it} \) Management action
\(b_t \) Budget constraint
<table>
<thead>
<tr>
<th>Component</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
<td>$s \in S$</td>
</tr>
<tr>
<td>Actions</td>
<td>$a \in A$</td>
</tr>
<tr>
<td>Transition Dynamics</td>
<td>$\mathcal{T}(s'</td>
</tr>
<tr>
<td>Rewards</td>
<td>$r(s^t, a^t) : S \times A \rightarrow \mathbb{R}$</td>
</tr>
<tr>
<td>Discount Factor</td>
<td>γ</td>
</tr>
<tr>
<td>Policy</td>
<td>$\pi(a</td>
</tr>
</tbody>
</table>
Size of States and Actions

- Number of States and Actions are exponential in the network size
 - \(N \) is the number of states each slot can take on
 - \(M \) is the number of actions available in each reach

\[
|S| = \left(\frac{(N + H - 1)!}{H!(N-1)!} \right)^R \\
|A| = M^R
\]

| Number of Reaches (R) | Number of Slots (H) per Reach | Number of Actions: \(|A| \) | Number of States: \(|S| \) | Transition Model Size: \(|S| \times |S| \times |A| \) |
|------------------------|-------------------------------|------------------|-------------|-------------------|
| 3 | 2 | 27 | 216 | 1.0 x 10^7 |
| 5 | 2 | 243 | 7,776 | 1.4 x 10^{10} |
| 3 | 3 | 27 | 1,000 | 2.7 x 10^7 |
| 5 | 3 | 243 | 10,000 | 2.4 x 10^{12} |
Dynamics

• **Mortality**
 - Plants in each slot die with independently with probability d
 - Eradication of invasive plant, could fail stochastically

• **Propagule Generation**: Each surviving plant produces g propagules deterministically

• **Propagule Dispersal**: upstream or downstream with
 - $P(\text{arrive at reach } j \mid \text{ started at reach } i)$

• **Site competition/colonization** at slot h:
 - If h is occupied, no effect
 - Else propagules compete to colonize slot, bias β in favour of invasive plants

Network dispersal model from Muneepeerakul et al. 2007
Dynamics Models

Dispersal Model
Probability of propagule leaving reach i and arriving in reach j is proportional to the rate of propagule survival upstream/downstream and the distance travelled

$$K_{i,j} = Cu_{i,j}^{NU} d_{i,j}^{ND}$$

Competition Model
Probability that species k wins in slot s is equal to k’s proportion of the total number of propagules arriving in slot s modified by a weighted factor β.

$$p_{\text{invasive}} = \frac{\beta g_{\text{invasive}}}{\beta g_{\text{invasive}} + g_{\text{native}}}$$

$$p_{\text{native}} = 1 - p_{\text{invasive}}$$
Dispersal Model

Probability of propagule leaving reach i and arriving in reach j

$$K_{ij} = Cu^{NU_{ij}} d^{ND_{ij}}$$

Where:

- C – is a normalization constant
- u – is the upstream propagule survival rate
- d – is the downstream propagule survival rate
- NU_{ij} – is the number of upstream reaches between reach i and j
- ND_{ij} – is the number of downstream reaches between reach i and j
Competition Model

\[p_{\text{invasive}} = \frac{\beta g_{\text{invasive}}}{\beta g_{\text{invasive}} + g_{\text{native}}} \]

\[p_{\text{native}} = 1 - p_{\text{invasive}} \]

- \(p_{\text{species}} \) - Probability that species wins
- \(g_{\text{species}} \) - Number of propagules of species
- \(\beta \) - “competitive advantage” of an invasive seed versus a native seed
 - 1.0, 1.5, 2.0...
Estimating the Transition Model

• It’s easy to write a simulator for drawing samples of the dispersal and competition processes.

• But computationally intractable to compute the exact transition probabilities $\mathcal{T}(S'|S, A)$.
 • Estimate transition probabilities by drawing a large number of samples from the simulator.
Error Bounds on Transition Model

\[Pr \left(\max_{s'} \left| \mathcal{T}(s' \mid s, a) - \mathcal{T}(s' \mid s, a) \right| < \epsilon \right) > 1 - \delta \]

- Confidence interval with width of \(\varepsilon \)
- 1-\(\delta \) probability of being within interval
- This is a very loose bound : \(|S| \) is large
- Future Work:
 - Tighter bounds that account for missing states from simulations
 - Approximate algorithms with PAC guarantees on bounds
Optimization

• Once estimate of $\hat{T}(S' | S, A)$ is obtained perform Value Iteration on action-value function $Q^*(s, a)$
Interpreting the Policy

• Direct Examination of Optimal Policy

• Run optimal policy forward – collect stats from many simulated trajectories
 • Time to reach steady state
 • Frequency with which completely invaded
 • Frequency with which uninested states are reached

• Future Work
Comparing to Rule of Thumb Policies

• Managers and Ecology/Economics Literature suggest:
 • **Triage**: treat most invaded reaches first
 • **Chades, et al.**: upstream first; extreme nodes first (one reach treated per period)
 • Treat **leading edge** of spread
Comparing policy pathways

Chades

Leading edge

Optimal

Triage up to down

- empty
- native
- invader

☐ eradicate

○ restore
Results: Costs

Total Costs

- Large pop, up to down
- Shades
- Leading Edge
- Optimal
Results

• Optimized spatial policy can outperform aspatial rules of thumb policies

• Spatial characteristics of the system under invasion are relevant to optimal management
 • strength of downstream vs upstream dispersal
 • presence of long distance dispersal changes policy
Future Ecology/Economics work

• Better ecological models of competition needed
• More investigation of space-time interactions
• Stochastic arrivals from outside network
• Richer objective functions
 • Separate competitiveness and colonization probabilities
• Model human dispersal of invasive plants via boating
Future Computational Work

- **Memory**: value iteration with partial transition model loaded into memory

- **Data re-use**: minimizing calls to expensive simulators when learning model

- **Compact Representations**: more compact spatial representations of states and policies
 - Larger problem sizes
 - Improved policy interpretation
 - Relational learning to distill general rules from policy

- **Bounded Approximations**: PAC-style algorithms with bounds on results
 - Estimate values of states directly through simulation
References

This work funded as part of the US National Science Foundation project in Computational Sustainability.
Thank You

Questions?