# MANAGING IMPERFECTLY OBSERVED COMPLEX SYSTEMS

COMPSUST CONFERENCE, CORNELL UNIVERSITY JUNE 9, 2009

#### GAUTAM SETHI<sup>1</sup>, CHRIS COSTELLO<sup>2</sup>, ANTHONY FISHER<sup>3</sup>, MICHAEL HANEMANN<sup>3</sup>, AND LARRY KARP<sup>3</sup>

BARD CENTER FOR ENVIRONMENTAL POLICY.
 DONALD BREN SCHOOL OF ENVIRONMENTAL SCIENCE & MANAGEMENT.
 UNIVERSITY OF CALIFORNIA AT BERKELEY.

# TALK OUTLINE

Motivation Roughgarden & Smith's claim Optimal policy descriptions Critique of Roughgarden & Smith Our Model Results Conclusions

#### enfish.c?

┶╻┲╴┕╱╴┱┼┲╒╞╌┼╢╱᠓▓<u></u>╞╎╴╱┍╅Ⴗ╱┍╅Ⴗ╷╌╢╌╴┍╅┼╞╴2969⋇ ┟╴\_╅┞┲╒╞╌┞╢╻╒╌┕╪80°╺┱┍╞ ╌┍┋ ?≥=Ҟ┟└┌ぷ⋦╅\_─┌▓≦╝┝┽╔┑╞┝╝┝┽╔┑╞┝╝┽<u>╔</u>=103669 ] ╒────┇ 54 (C─┼┼⋟╔┟थ─┼ \_╞\_╞├ ╡≦ ─╞╞\_)) ┘──└┼┾╔ ╫╔┬▓╔└┽┼ ╲──└ ┍┽┶╸╴┼╪╩╴╘╴┤┊ ╫┼╕┝╝╞╴┼┌╧┍╬└╞╴┽╷┼╞┬╶╬╴┽┼╶└╧╶┼╣ ┼╞╴├<u>थ</u>े║┼ ┼┼╞<u></u>╞╞ └╧\_\_╊ू┾╊┼╶╅\_\_°┤┍┍╶<sup>╼</sup>╴╧╅╇╇╞<sub>┻</sub>╅╶╢┇ ╍┇╔╗╴╅\_┍╔┽┽╅<sub>┻┲</sub>╱┇╔╫┉╬┍╪╺┇╴╔╫═┅══┽┿<u>╄</u>┝╱┑┑┑┑┑┑╕ ╼╴┍┖╫┈┆ ₽̈́́,⊇: #└Ÿ╒Ÿ┰▓\_₽≥ ⟨₨▓╒ ┢\_\_¯\_ 54: C¯┼┼⋟╔┟Ÿ¯┼ \_⋭\_⋭┝ ਖ≤ т┢╞\_ \_\_\_ੵ╔<mark>╔┟\_╔╔⊤╞─65─25─54─202₊┼╆╶╻<sub>┶</sub>⋭\_╻</mark>┍╔╵┟」 थे▓\_ ┚<sup>╹</sup>Ÿ┼⋟╒ #└Ÿ╒Ÿ┰▓\_┢≥ ŇĔ┝╬┈┝╪╴╫╘╬╔╬┰╣┈╞╕╶╚┍╬╞┼┝╺╢╬┝╵ ╾╬┍╓╢╘╢╖┑╋╆┝╱╔╢╧╞┎╓╸\_╚┝┶┍ ┉┝╵┰╌╾┝┥┈╩╔ ╬┰╶╫╴┰┼╶┰╴╦╴╝┎╣┼╣┝╧╝ -ٱŬŀ r▓ŔŸ⊧\_ -ŀ ─10 [U:ﷺ:S:4:신] C#80883 П

#### THE REAL enfish.c

#### $\Theta \odot \odot$ enfish.c.txt tmax = 50; runtot = 100; nscanstep = .05; daymax = 365 \* tau; interest = exp(rho\*tau); seed = (long) time((time\_t \*) NULL); fishseed(seed); for (ntarg = ko\*nscanstep; ntarg < 1000; ntarg += nscanstep\*ko) ł nsum = 0; nsqsum = 0; catchsum = 0; catchsqsum = 0; steps\_not\_extinct = 0; assetssum = 0; assetssqsum = 0; nextinct = 0; textinctsum = 0; textinctsqsum = 0; htarg = ro\*ntarg\*(ko - ntarg)/ko; ftarg = ro\*(ko - ntarg)/ko; for $(run = 1; run \le runtot; ++run)$ ł $account = ko - ntarg; nt = nt_tau = ntarg; textinct = 0;$ fishtime = 0; ht = 0; rt = ro; kt = ko; for (fishtime = 1; fishtime <= tmax; ++fishtime) ł // z = zt();// printf("%lf\n",z); rt = (1 + rksd\*zt())\*ro; kt = (1 + rksd\*zt())\*ko; nte = (1 + nse\*zt())\*nt\_tau; tact = ftarg\*nte\*tau; ht = (1 + hse\*z)\*tact/tau; ntday = nt; for (day = 0; day < daymax; ++day)ł ntday += (rt\*ntday\*(kt - ntday)/ko - ht)\*(tau/daymax); if (ntday $\leq = 0$ ) ł ntday = 0;break;

# MOTIVATION

- Fishery collapse has emerged as a widespread phenomenon
- Many possible causal factors
  - Overcapitalization of the industry
  - Politicized catch quotas
  - Imperfect monitoring and enforcement
  - Increased stochasticity

## WHY FISHERIES COLLAPSE ...

Roughgarden and Smith (1996) assume multiple sources of stochasticity and find that the use of the "economic" criterion leads to fishery collapse

"Economic theory for managing a renewable resource, such as a fishery, leads to an ecologically unstable equilibrium as difficult to maintain as balancing a marble on top of a dome. A fishery should be managed for ecological stability instead – in the analogy, as easy to maintain as keeping a marble near the base of a bowl".

#### DETERMINISTIC MODEL

The manager seeks to maximize the present discounted sum of profits, subject to the growth equation:

 $\max_{h(t)} \int_0^\infty e^{-rt} ph(t) \quad s.t. \quad \dot{x(t)} = g(x(t)) - h(t)$ 

where *r* is the discount rate, *p* is the price of fish, *h* is the harvest, *g* is the stock-recruit function, and *x* is the stock of fish

## DETERMINISTIC SOLUTION



In this example, optimal target stock equals 400 and annual catch equals 60.

- What is the intuition behind this result?
- What are its properties in terms of stock dynamics?

#### ALTERNATIVE REPRESENTATION

The solution to the deterministic model is given by  $g'(x^*) = r$ 



# FUTURE STOCK UNCERTAINTY

- Reed (1979) assumes manager can observe stock accurately at the time of announcing catch quota but is faced with recruitment uncertainty
- He shows that the solution to this problem is qualitatively similar
- Recruitment uncertainty leads to higher escapement

## CURRENT STOCK UNCERTAINTY

 Clark and Kirkwood (1986) assume manager observes pre-spawning stock accurately and post-spawning stock with noise



# MULTIPLE UNCERTAINTY

 Roughgarden and Smith pose a new problem: What is the implication of following the solution of deterministic economic model when
 The stock-recruit relationship is stochastic,
 Stock measurements are prone to errors, and
 Actual take is prone to error?

To answer this question, the authors run simulations and find that following the deterministic economic decision rule leads to ...

#### ... DISASTER!





## **R&S OPTIMAL POLICY**



#### **R&S RECOMMENDATION**



# OUR WORK

- The deterministic policy recommendation from the economic model is inapplicable to the highly stochastic world the authors create.
- The 3/4<sup>th</sup> K solution is a constrained optimum i.e. it is the optimum solution *within the class of constant-escapement rules*.
- This raises two questions:
  - What *is* the optimum solution under three sources of uncertainty mentioned above?
  - How does the optimum solution compare with Roughgarden and Smith's solution?

# ASSUMPTIONS

- Each of the shocks is multiplicative and is drawn from known independent uniform densities.
- The stock-recruit relationship is logistic with known parameters.
- The only state variable used by the manager is current period measurement. The control variable is the seasonal catch quota.
- "Small" and "large" uncertainty refer to uniform shocks of <u>+</u>10% and <u>+</u>50% around the mean values.

#### PROBLEM FORMULATION

The manager's problem is to  $\max_{\{q_t\}\geq 0} \mathbb{E}\left\{\sum_{0}^{\infty} \alpha^t h_t\right\}$  $x_t = z_t^g G(s_{t-1})$  $s_t = x_t - h_t$  $m_t = z_t^m x_t$  $h_t = \min(x_t, a_t)$ 

## SOLUTION ALGORITHM

#### The DPE of this problem is

 $J_t(m_t) = \max_{q_t \ge 0} \mathbb{E}_{x_t, h_t} \left\{ h_t + \alpha J_{t+1} \left( z_{t+1}^m z_{t+1}^g G(x_t - h_t) \right) \right\}$ 

We solve this dynamic problem using value function iteration, which involves
making a guess of the value function,
finding the conditional solution,
recomputing the value function, and
checking for convergence.

# RESULTS: RECRUITMENT UNCERTAINTY



# RESULTS: SMALL MULTIPLE UNCERTAINTY



# RESULTS: ONE LARGE UNCERTAINTY



# RESULTS: MULTIPLE UNCERTAINTY



## SENSITIVITY ANALYSIS

To see how robust our results are to the assumptions we make, we conduct sensitivity analyses with respect to:

The stock-recruit relationship,

The value of the intrinsic growth parameter, and

Search costs

We find that our results are fairly robust with respect to each of these

# SUMMARY STATISTICS

| Policy               | Extinction Probability                                                                                         | Mean Extinction Time | Commercial Value                                                                                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------|
|                      | Within 50 Years                                                                                                |                      | Over 50 Years                                                                                                    |
|                      |                                                                                                                | (Years)              | (Dollars)                                                                                                        |
| All Small Shocks     |                                                                                                                |                      |                                                                                                                  |
| (Optimal Policy)     | 0.00                                                                                                           | 00                   | 506                                                                                                              |
| All Small Shocks     |                                                                                                                |                      | and the second second second                                                                                     |
| (Constant-Escapement | 0.00                                                                                                           | 00                   | 506                                                                                                              |
| Policy)              |                                                                                                                |                      |                                                                                                                  |
| Large Growth Shock   |                                                                                                                |                      |                                                                                                                  |
| (Optimal Policy)     | 0.00                                                                                                           | 00                   | 501                                                                                                              |
| Large Measurement    |                                                                                                                |                      |                                                                                                                  |
| Shock                |                                                                                                                |                      |                                                                                                                  |
| (Optimal Policy)     | 0.00                                                                                                           | 00                   | 433                                                                                                              |
| Large Implementation |                                                                                                                |                      |                                                                                                                  |
| Shock                |                                                                                                                |                      |                                                                                                                  |
| (Optimal Policy)     | 0.00                                                                                                           | $\infty$             | 494                                                                                                              |
| All Large Shocks     |                                                                                                                |                      |                                                                                                                  |
| (Optimal Policy)     | 0.06                                                                                                           | 890                  | 421                                                                                                              |
| All Large Shocks     |                                                                                                                |                      |                                                                                                                  |
| (Constant-Escapement | 0.57                                                                                                           | 60                   | 308                                                                                                              |
| Policy)              | and the second second                                                                                          |                      | States States and                                                                                                |
|                      | The second s |                      | and the second |

# CONCLUSIONS

- Given our assumptions, we find that the optimal policy is does better than the constantescapement policy on *both* counts: commercial profitability as well as extinction probability
- However, we make a number of simplifying assumptions in this model, which makes it inapplicable
- In light of this, we see this model as an initial step towards the development of more complex and realistic models

# THANK YOU!

