Model-based adaptive spatial sampling for occurrence map construction

N. Peyrard and R. Sabbadin
Mapping spatial processes in environmental management

Mapping pest occurrence

- Building pest occurrence map in order to eradicate
- Observations costly
- Errors in mapping also costly
Mapping spatial processes in environmental management

Different problems depending on observations nature

- **Data visualization**
 - Complete observations (everywhere)
 - Perfect observations (No errors/missing data)
 ⇒ How to visualize data?

- **Map reconstruction**
 - Complete observations
 - Noisy observations
 ⇒ How to reconstruct the “true” map?

- **Sampling and map construction**
 - Incomplete observations (not everywhere)
 - Noisy observations
 ⇒ Where to observe? / How to reconstruct?
Mapping spatial processes in environmental management

How to design an efficient spatial sampling method to estimate an occurrence (0/1) map when

✓ process to map has spatial structure
✓ observations are imperfect/incomplete
✓ sampling is costly
✓ process does not evolve during the sampling period
Overview of the proposed approach

Optimization approach for designing spatial sampling policies

The Hidden Markov Random Field model is used for:

- Representing current uncertain knowledge about map to reconstruct
- Updating knowledge after observations
- Defining a unique criterion for
 - map reconstruction from observed data
 - spatial sampling actions selection
Optimal sampling problem

Hidden variable X

Sampling action a

Observation model $p(Y = o | x, a)$

Question: How to reconstruct hidden variable X using sampling actions?

1. Hidden variable model
2. Updated model after sampling result
3. Hidden variable reconstruction
4. Sampling action optimization
Spatial sampling optimization

The hidden variable x is a map

\Rightarrow The sampling optimization problem has to be revisited

Question: How to reconstruct hidden map x using sampling actions?

1. Hidden map model
2. Updated model after sampling result
3. Hidden map reconstruction
4. Sampling action optimization
Pairwise Markov random field (1)

- Multiple interacting variables
- Independence given neighborhood

⇒ Pairwise Markov random field

Question: How to reconstruct hidden map \(x \) using sampling actions?

1. Hidden map model
2. Updated model after sampling result
3. Hidden map reconstruction
4. Sampling action optimization
Pairwise Markov random field (2)

- Multiple interacting variables
- Independence given neighborhood

⇒ Pairwise Markov random field

- Interaction graph $G = (V, E)$
- ψ_i: “weights” on states of vertex i
- ψ_{ij}: correlations “strength” between neighbor vertices
- Z: normalizing constant / partition function

$$P(x) = \frac{1}{Z} \left(\prod_{i \in V} \psi_i(x_i) \right) \left(\prod_{(i,j) \in E} \psi_{ij}(x_i, x_j) \right)$$
Hidden Markov random field (1)

- $a \in \{0, 1\}^{|V|}$: subset of V selected for sampling
- Independent observations:

$$P(o|x, a) = \prod_{i \in V} P_i(o_i|x_i, a_i)$$

Question: How to reconstruct hidden map x using sampling actions?

1. Hidden map model
2. Updated model after sampling result
3. Hidden map reconstruction
4. Sampling action optimization
Hidden Markov random field (2)

- $a \in \{0, 1\}^{|V|}$: subset of V selected for sampling
- Independent observations:

$$P(o|x, a) = \prod_{i \in V} P_i(o_i|x_i, a_i)$$

Updated Markov random field (Bayes’ theorem)

$$P(x|o, a) = \frac{1}{Z} \left(\prod_{i \in V} \psi'_i(x_i, o_i, a_i) \right) \left(\prod_{(i,j) \in E} \psi_{ij}(x_i, x_j) \right)$$

where

$$\psi'_i(x_i, o_i, a_i) = \psi_i(x_i) P_i(o_i|x_i, a_i)$$
Hidden map reconstruction (1)

Local (MPM):
\[x_i^* = \arg \max_{x_i} P_i(x_i | o, a), \forall i \in V \]

Question: How to reconstruct hidden map \(x \) using sampling actions?

1. Hidden map model
2. Updated model after sampling result
3. Hidden map reconstruction
4. Sampling action optimization
Hidden map reconstruction (2)

Local (MPM):
\[x^*_i = \arg \max_{x_i} P_i(x_i | o, a) \]

Value of reconstructed map
Expected number of well classified sites in \(x^* \)

\[V^{MPM}(o, a) = f \left(\sum_{i \in V} \max_{x_i} P_i(x_i | o, a) \right) \]
Sampling action optimization (1)

Hidden variables

- \(a \in \{0, 1\}^{|V|} \) selected for sampling
- Independent observations \(o \in \{0, 1\}^{|V|} \)

\(\Rightarrow \) How to optimize the choice of \(a \)?

Question: How to reconstruct hidden map \(x \) using sampling actions?

1. Hidden map model
2. Updated model after sampling result
3. Hidden map reconstruction
4. Sampling action optimization
Sampling action optimization (2)

- $a \subseteq V$ selected for sampling
- Independent observations o result

$U(a) = -c(a) + \sum_o P(o|a)V(o, a)$

$a^* = \arg \max_a U(a)$

- The computation of a^* is hard! (NP-hard)
- Only feasible for small problems or needs approximation!
Approximate spatial sampling (1)

Approximate the computation of

\[a^* = \arg\max_a -c(a) + \sum_o P(o|a)V_{MPM}(o, a) \]

• Explore cells where initial knowledge is the most uncertain: marginal \(P_i(x_i|o, a) \) closest to \(\frac{1}{2} \)

\[\tilde{a} = \arg\max_a -c(a) + f \left(\sum_{i,a_i=1} \min \left\{ P_i(X_i = 1), P_i(X_i = 0) \right\} \right) \]

• Marginals computation is itself \textit{NP-hard} \\
 ⇒ approximation using belief propagation (sum prod) algorithm
Approximate spatial sampling (2)

The approximation results from simplifying assumptions:

- Sampling actions are reliable
- No passive observations
- Joint probability approximated by one with independent factors
Adaptive spatial sampling (1)

• Idea:
 - Sampling locations not chosen once for all before the sampling campaign
 - Intermediate observations are taken into account to design next sampling step
 - Possibility to visit a cell more than once
Adaptive spatial sampling (2)

- a sampling strategy δ is a tree
- a trajectory in δ: $\tau = (a^1, o^1, \ldots, a^K, o^K)$

Value of a leaf

$$U(\tau) = -\sum_{k=1}^{K} c(a^k) + V^{MPM}(o^0, o^1, \ldots, o^K, a^0, a^1, \ldots, a^K)$$

Value of a strategy $V(\delta) = \sum_{\tau} U(\tau) P(\tau \mid \delta)$
Heuristic adaptive spatial sampling

- Exact computation is \textit{PSPACE-hard}!

\[\Rightarrow\] Heuristic algorithm
- on line computation
- approximate method for static sampling at each step
Concluding remarks

- A framework for spatial sampling optimization:
 - based on Hidden Markov random fields
 - different map quality criteria
 - extended to “adaptive” sampling
- Problems too complex for exact resolution
 ⇒ Heuristic solution based on approximate marginals computation
- Empirical validation on simulated problems:
 - Comparison of SSS, ASS and classical sampling methods (random sampling, ACS)
 - Markov random fields parameters learned from real data
 - ASS > SSS > classical methods
Ongoing work

- Exact algorithms for small problems (Usman Farrokh): combining variable elimination and tree search
- “Random sets + kriging” approach (Mathieu Bonneau): development of a dedicated approximate method and comparison to the HMRF approach
- PhD thesis on *adaptive spatial sampling for weeds mapping at the scale of an agricultural area* (Sabrina Gaba, INRA-Dijon).

- Future?
 ⇒ Spatial partially observed Markov decision processes
Questions?

Thanks for listening
Contents

1- Optimal sampling of a hidden random variable
2- Defining optimal spatial sampling problems
3- Approximate computation of an optimal strategy
4- Evaluation of proposed method on simulated data
Optimal sampling problem

Hidden variable model

Question: How to reconstruct hidden variable X using sampling actions?

1. Hidden variable model
2. Updated model after sampling result
3. Hidden variable reconstruction
4. Sampling action optimization
Optimal sampling problem

Updated model

Posterior: \[P(x|o, a) = \frac{P(o|x, a)P(x)}{P(o|a)} \]

Question: How to reconstruct hidden variable \(X \) using sampling actions?

1. Hidden variable model
2. Updated model after sampling result
3. Hidden variable reconstruction
4. Sampling action optimization
Optimal sampling problem

Hidden variable reconstruction

\[
x^*(o, a) = \arg\max_x P(x|o, a)
\]

\[
V(o, a) = f(P(x^*|o, a))
\]

Question: How to reconstruct hidden variable \(X \) using sampling actions?

1. Hidden variable model
2. Updated model after sampling result
3. Hidden variable reconstruction
4. Sampling action optimization
Optimal sampling problem

Hidden variable reconstruction

\[x^{\ast}(o, a) = \arg \max_x P(x | o, a) \]
\[V(o, a) = f(P(x^{\ast} | o, a)) \]

Question: How to reconstruct hidden variable \(X \) using sampling actions?

- \(x^{\ast}(o, a) \) is the **best reconstruction** given sampling result \((o, a)\)
- \(V(o, a) \) is the **value of reconstructed variable** after sampling result \((o, a)\)
Optimal sampling problem

Sampling action optimization

\[U(a) = -c(a) + \sum_o P(o|a) V(o, a) \]

\[a^* = \arg\ max_a U(a) \]

Question: How to reconstruct hidden variable \(X \) using sampling actions?

1. Hidden variable model
2. Updated model after sampling result
3. Hidden variable reconstruction
4. **Sampling action optimization**
Optimal sampling problem

Sampling action optimization

\[
U(a) = -c(a) + \sum_o P(o|a)V(o, a)
\]

\[
a^* = \arg \max_a U(a)
\]

Question: How to reconstruct hidden variable \(X\) using sampling actions?

The **value of an action** is a tradeoff between

- The **cost** \(c(a)\) of the action and
- The **expected quality of the reconstructed variable** (over all possible sample results)
Contents

1- Optimal sampling of a hidden random variable
2- Defining optimal spatial sampling problems
3- Approximate computation of an optimal strategy
4- Evaluation of proposed method on simulated data
Contents

1- Optimal sampling of a hidden random variable
2- Defining optimal spatial sampling problems
3- Approximate computation of an optimal strategy
4- Evaluation of proposed method on simulated data
HMRF model for fire ants problem (1)

- eradication (at previous year): \(e_i \in \{0, 1\}, \ i = 1, \ldots n \)
- search actions: passive search or active search, \(a_i \in \{0, 1\}, \ i = 1, \ldots n \)
- observations: no nest detected / at least one nest detected, \(o_i \in \{0, 1\}, \ i = 1, \ldots n \)
HMRF model for fire ants problem (2)

- Distribution on maps = Potts model

\[
P_e(x \mid \alpha, \beta) = \frac{1}{Z} \exp \left(\sum_{i \in V} \alpha e_i \operatorname{eq}(x, 1) + \beta \sum_{(i,j) \in E} \operatorname{eq}(x_i, x_j) \right)
\]

- Distribution of observation given map, \(P_{a_i}(o_i \mid x_i, \theta) \)

<table>
<thead>
<tr>
<th>(o_i) (x_i)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1 - \theta_{a_i})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(\theta_{a_i})</td>
</tr>
</tbody>
</table>

with \(\theta_0 < \theta_1 \)
HMRF model for fire ants problem (3)

An initial arbitrary sampling \((a^0, o^0)\) is used for:

- Parameters estimation: \(\lambda = (\alpha, \beta, \theta)\)
 approximate version of EM for HMRF (Simul field EM)
 - identification problem between \(\alpha\) and \(\theta\)
 - OK if \(\theta\) known: use of expert values

- Marginals computation: \(P_i(x_i|o^0_i, a^0_i)\)
Heuristic sampling methods evaluation (1)

- Evaluation on simulated data
- Comparison of behavior of
 - random sampling (RS)
 - adaptive cluster sampling (ACS)
 - static heuristic sampling (SHS)
 - adaptive heuristic sampling (AHS)
Heuristic sampling methods evaluation (2)

- Procedure: repeat 10 times
 - simulate hidden map x from $P(x | \alpha, \beta)$ (50 × 50 cells)
 - apply regular sampling (about 10% of area): a^0
 - simulate o^0 from $P_{ai}(o_i | x_i, \theta)$ (regular sampling plus passive search)
 - estimate initial knowledge
 - apply RS, ACS, SHS, AHS, 10 times
Rate of misclassified cells

\[\alpha = (0, -2), \beta = 0.8 \quad \alpha = (0, 0), \beta = 0.5 \quad \alpha = (1 - 1), \beta = 0.4 \]

\[\theta = (0, 0.8) \]

legend: SHS AHA ACS RS
Per color error rate

misclassified empty cells

misclassified occupied cells

legend:
SHS AHA ACS RS

\[\alpha = (0, -2) \]
\[\beta = 0.8 \]

\[\alpha = (0, 0) \]
\[\beta = 0.5 \]

\[\alpha = (1 - 1) \]
\[\beta = 0.4 \]
General behavior

- ACS is not adapted (as expected): poor results
- Adaptive HS \geq Static HS \geq Random S
- Discrepancy between Adaptive HS and Static HS increases with
 - sampling resources
 - hidden map structure
Where do we sample?

Hidden map

\[\alpha = (1, -1), \beta = 0.4, \theta = (0, 0.8) \]
Where do we sample?

Static sampling: A and O
Where do we sample?

Static sampling: marginals
Where do we sample?

Adaptive sampling: A and O (cumul)
Where do we sample?

Adaptive sampling: marginals
Where do we sample?

- No sampling in large empty areas
- Sampling preferably near detected occupied sites within low density areas
- If sampling resources increase
 - SHS complete exploration until the whole area is covered
 - AHA can visit several times a site before extending exploration to another area