

Challenges in Framing the Problem: Just what are we trying to optimize anyway?

Michael C. Runge USGS Patuxent Wildlife Research Center Laurel, MD

Computational Sustainability 2009 Cornell University, Ithaca, NY 8-11 June 2009

USGS Patuxent (and others...)

- Mission: Bring quantitative tools to bear on real management problems
 - Decision analysis
 - Estimation, modeling
 - Monitoring design
 - Optimization
- Intense focus on
 - Understanding the real decision context
 - Helping frame the decision problem
 - Developing quantitative tools that are appropriate to the specific decision context

PrOACT*

- Defining the <u>Problem</u>
- <u>Objectives</u>
- Actions
- <u>Consequences (models)</u>
- Trade-offs and optimization
- ...in recurrent decisions, also Monitoring and Feedback

*Hammond et al. 1999. Smart Choices: a practical guide to making better life decisions. Broadway Books, NY. 242 pp.

Two Framing Challenges

- Identify an appropriate abstraction of the real world
 - What aspects of the real problem are critical to include in the analysis?
 - How might this be biased by our viewpoint?
- Identify an abstraction of the real world that we can solve
 - Our abstraction is also guided by the methods we anticipate using
 - Does this sometimes lead us astray?

Natural Resource Management

- In reality, almost all of our natural resource management problems are
 - multiple-objective,
 - spatially-explicit,
 - recurrent (hence dynamic and potentially adaptive) decisions,
 - made under considerable uncertainty (both aleatory and epistemic),
 - with partial observability of the system
- We never treat them as such
 - How much of this complexity can we ignore in framing the problem?

This talk

- Focus on the OAC in PrOACT
 - Objectives
 - Alternative actions
 - Consequences (models)
- I'll leave the rest to others
 - Tradeoffs/Optimization: Conroy
 - Monitoring: Nichols
- We often find the framing solves much of the problem...

Case Studies

White-nose Syndrome in Bats Goose Harvest Management

Little Brown Bats, New York.

Photo credit: Nancy Heaslip, NYSDEC

White-nose Syndrome

- Emergent disease in cave-dwelling bats
 - First reported in 4 sites in NY in 2006-7
 - Spread to 38 sites by May 2008, 65 sites by April 2009
- Cumulative mortality rates have exceeded 90% in affected caves
- Mechanisms:
 - Causal agent suspected, new species of fungus in the genus Geomyces
 - Mechanisms of spread not known with certainty
 - Mechanisms of mortality may be increased energetic demands during hibernation, leading to starvation

Mortality in Affected Caves

WNS Decision Problem

- USFWS and State wildlife management agencies feel some urgency to take action
- What actions should be taken at which sites under what conditions, now and in the future?
 - Can they wait until more is known, or are there some actions that are better taken sooner?

Characteristics

- Multiple-objectives
- Dynamic
- Substantial uncertainty
- Spatially-explicit

Atlantic Population Canada Geese

- Migratory population of CG, breeds on the Ungava Peninsula
- Large sport-hunting interest and industry
 - Especially in the Chesapeake Bay
- Large declines in 1980s, early 1990s
- Sport hunting closed 1995-1999
- Population recovered
- How to manage hunting seasons now?

APCG Breeding Survey

APCG Decision Problem

- How to set hunting regulations on an annual basis
 - To allow harvest opportunity
 - To avoid a significant decline like in the past
- Characteristics
 - Age-structured population dynamics (temporal lags in the system response)
 - Incomplete observation of system
 - Uncertainty about regulatory mechanisms, interaction with other species (resident geese)
 - Multiple objectives?

Objectives

Single-species objectives Multiple objective problems

Single-species Objectives

- For recurrent decisions, the objectives may need to reflect the accrual of returns over time $\max \sum_{t} H_{t}$
 - This can be explicit, e.g.,
 - Or implicit, e.g., $\min p(E_{100})$
- The first one captures the bulk of our experience
 - Note, the infinite time horizon captures the desire for sustainability

APCG Objective

Mean-variance Tradeoffs

- Sometimes we care about temporal aspects of the states and returns
- min $Var(N_t)$
 - Variance around a target
 - Variance around the mean
- More generally, how to we balance a desire to:

$$\min \sum_{t=0}^{\infty} (N_t - N_0)^2$$
$$\min \sum_{t=0}^{\infty} (N_t - \overline{N})^2$$

 $\max \sum R_t \text{ and } \min Var(N_t)$

 $\max \sum R_t$ and $\min Var(R_t)$

Multiple-objective Problems

- Most natural resource management problems are, at their heart, multiple-objective trade-off problems
 - The objectives are often very different in nature, and are not readily combined into a single objective function
- Challenges
 - We need to know what these objectives are (human dimensions work is critical here)
 - We need to know how to manage the trade-offs (multicriteria decision analysis, MCDA, is critical here)

WNS Objectives

- Maintain persistence of all bat species across their historical range
 - Means: reduce spread, reduce mortality, increase development of resistance
- Avoid unacceptable impacts to non-bat species (e.g., endemic cave fauna)
 - Due to loss of bats (ecosystem function)
 - Due to treatment effects
- Avoid unacceptable human health risks
 - Due to treatment effects
 - Due to secondary disease impacts
- Maintain credibility of wildlife agencies
- Minimize regulatory impact on human activities?

Dynamic MCDA?

- Has anyone done dynamic optimization with embedded multiple-objective trade-offs?
- Several approaches possible:
 - Know weighting in advance, create a weighted return, and accumulate that
 - Create a proxy single-objective function for optimization, compare performance on multiple objectives, do tradeoffs after optimization
 - Integrated dynamic optimization and multiple-objective trade-offs? (Is this even possible to conceive?)

Alternative Actions

APCG Alternatives

- Consider 5 discrete possibilities
- Intended adult male harvest rate
 - Measured by reward bands AM harvest rate
- 0-20% in steps of 5%
- Harvest rates of other classes in proportion to this

Portfolios

- One type of discrete set involves combinations of like elements arranged in portfolios
- Example
 - Spatial allocation problems, like reserve design. The set of alternatives is all possible combinations of individual spatial units
 - Can specify this set, in theory, but computational burden is huge
 - See McDonald-Madden, later today.

Strategy Tables

- Another type of discrete set involves combinations of unlike elements arranged in strategies
- Example
 - For responding to white-nose syndrome
 - There are a number of things you can do, including cave closures, cave treatment, development of alternative habitats, in-situ or ex-situ bat treatment, and food supplementation
 - What combined strategies might you consider?

WNS MANAGEMENT: STRATEGY TABLE									
Bat-related Cave/Mine Closures	Decontamination Procedures in Place for Access?	Human-related Cave/Mine Closures	Human-related Closure Duration	Cave/Mine Treatment	Alternative Habitats	In-situ Bat Treatment	Ex-situ Bat Treatment	Duration of ex- situ treatment	Provide Food in Cave/Mine
restrict bat access to cave/mine	yes	close for all uses	year-round	fungicides	Create new roosting space in new place	fungicides (e.g., chemical, vinegar wash)	capture all bats & treat w/ fungicides	indefinite	yes
seasonally restrict bat access to cave/mine	20	recreational access	winter only	biocontrol	Create new roosting space within the cave/mine	hiocontrol agents	capture all bats & treat w/ biocontrol agents	multiple	no
do not restrict bat	10			infrared	No alternative	inoculation&accin	capture all bats & treat		
access to cave/mine		commercial access	No closure	modifications of cave/mine environment (thermal, humidity, airflow), can be at cave or microsite scale	nabitat	restrict movement of affected bats	capture all &	short (one- week)	
		recreational and research access only		ultraviolet treatments		place unaffected bats in alternate space	no treatment	no ex-situ treatment	
		recreational and commercial access only		no treatment		no treatment			
		research and commercial access only							
		allow all uses							

This might also have a spatial component...

Dynamic Sets of Actions

- For recurrent decisions, some consideration needs to be given to how the set of alternative actions may change over time
- Several scenarios
 - Fixed set of alternatives
 - Time-dependent set of alternatives (linked decisions)
 - Dynamic set of alternatives (known dynamics)
 - i.e., decision today affects options tomorrow, in known way
 - Developing an adaptive set of alternatives

Models

Model Development

- The model needs to predict the outcomes associated with the different actions in terms that are relevant to the objectives
- What level of complexity is needed in the predictive model?
- What level of complexity can we handle on the computational side?

APCG Population Model

Partially Observed Systems

- When we need a certain level of complexity in the model, but cannot observe all the system states, what do we do?
 - Latent state variables: sometimes we can use time series data to reconstruct latent state variables, but then how do we handle uncertainty about those states?
 - POMDP (see later talks and discussions)

AHM and AP Canada geese: reconstruction

Uncertainty

- We know we've got it, but does it matter?
- What is the relevant uncertainty to include in a model set?
- Can we use techniques akin to EVPI to help guide us?

Learning

- In recurrent decisions, when we hope to take an adaptive approach, we also need models for information dynamics
- How do different actions affect the rate of learning (the resolution of uncertainty)?

Summary

Double-loop Learning

