Maximum entropy modeling of species geographic distributions

Steven Phillips with Miro Dudik & Rob Schapire

Modeling species distributions

occurrence points

Yellow-throated Vireo

....

environmental variables

Predicted distribution

Estimating a probability distribution

Given:

- Map divided into cells
- Environmental variables, with values in each cell
- Occurrence points: samples from an unknown distribution

Our task is to estimate the unknown probability distribution

Note:

- The distribution sums to 1 over the whole map
- Different from estimating probability of presence
- Pr(t|y=1) instead of Pr(y=1|x) (t=cell, y=response, x=environ)

The Maximum Entropy Method

Origins: Jaynes 1957, statistical mechanics

Recent use:

machine learning, eg. automatic language translation macroecology: SAD, SAR (Harte et al. 2009)

To estimate an unknown distribution:

- 1. Determine what you know (constraints)
- Among distributions satisfying constraints:
 Output the one with maximum entropy

Entropy

More entropy : more spread out, closer to uniform distribution

2nd law of thermodynamics:

- Without external influences, a system moves to increase entropy

Maximum entropy method:

- Apply constraints to remove external influences
- Species spreads out to fill areas with suitable conditions

Using Maxent for Species Distributions

"Features"

"Constraints"

"Regularization"

Free software: www.cs.princeton.edu/~schapire/maxent/

Features impose constraints

Feature = environmental variable, or function thereof

find distribution of maximum entropy such that for all features **f**: mean(**f**) = sample average of **f**

Features

Environmental variables or simple functions thereof.

Maxent software has these classes of features (others are possible):

- 1. Linear
- 2. Quadratic
- 3. Product
- 4. Binary (indicator) ...

variable itself square of variable product of two variables membership in a category

5. Threshold

Hinge

6.

1 0 *Environmental variable*

Environmental variable

Constraints

Each feature type imposes constraints on output distribution

. . .

- Linear features ...
- Quadratic features
- Product features
- Threshold features
- Hinge features ...
- Binary features (categorical) ...

- .. mean
- ... variance
- ... covariance
 - proportion above threshold
 - mean above threshold
 - proportion in each category

Regularization

The Maxent distribution

... is always a Gibbs distribution:

$$q_{\lambda}(x) = exp(\Sigma_j \lambda_j f_j(x)) / Z$$

Z is a scaling factor so distribution sums to 1

 f_i is the j'th feature

 λ_j is a coefficient, calculated by the program

Maxent is penalized maximum likelihood

Log likelihood:

 $LogLikelihood(q_{\lambda}) = 1/m \Sigma_i ln(q_{\lambda}(x_i))$

where $x_1 \dots x_m$ are the occurrence points.

Maxent maximizes regularized likelihood:

LogLikelihood(q_{λ}) - $\Sigma_{j}\beta_{j}|\lambda_{j}|$

where β_j is the width of the confidence interval for f_j Similar to Akaike Information Criterion (AIC), lasso.

Performance guarantees

If true mean lies in confidence region then for best Gibbs \mathbf{q}_{λ} :

 $\begin{aligned} \mathsf{RE}(\mathsf{truth} \parallel \mathsf{SOL}) &- \mathsf{RE}(\mathsf{truth} \parallel q_{\boldsymbol{\lambda}}) \\ &\leq 2 \cdot \beta \|\boldsymbol{\lambda}\|_{1} \end{aligned}$

$$f_j$$
's bounded in [0,1]: $eta \propto \sqrt{rac{\ln n}{m}}$

 f_j 's binary of VC-dimension d: $\beta \propto \sqrt{\frac{d}{m} \ln \frac{m}{d}}$

Maxent software: β tuned on a reference data set

Estimating probability of presence

- Prevalence: Number of sites where the species is present, or sum of probability of presence
- Prevalence not identifiable from occurrence data (Ward et al. 2009)
 - Example: sparrow and sparrow-hawk
 - Both have same range map
 - Both have same geographic distribution of occurrences
 - Hawk is rarer within its range: lower prevalence
- Probability of presence & prevalence depend on sampling:
 - Site size
 - Observation time

Logistic output format

- Minimax: maximize
 performance for worst-case
 prevalence
- Exponential → logistic model
 - Offset term: entropy
- Scaled so "typical" presences have value 0.5

Response curves

- How does probability of presence depend on each variable?
- Simple features → simpler model
- Complex features → complex model

- Linear + quadratic (top)
- Threshold features (middle)
- All feature types (bottom)

0.9

ability of presence)

0.5 proba

Logistic 0.3

Effect of regularization: multiplier = 0.2

Smaller confidence Intervals

Lower entropy

Less spread-out

Effect of regularization: over-fitting

Regularization multiplier = 1.0 (not over-fit)

Regularization multiplier = 0.2 (clearly over-fit)

The dangers of bias

- Virtual species in Ontario, Canada
 - prefers mid-range of all climatic variables

Boosted regression tree model: biased p/a data

Presence-absence model recovers species distribution

Model from biased occurrence data

Model recovers sampling bias, not species distribution

Correcting bias: golden-crowned kinglet

Maxent model from biased occurrence data

Correcting bias with target-group background

Infer sampling distribution from other species' records – "Target group", collected by same methods

Aligning Conservation Priorities Across Taxa in Madagascar with High-Resolution Planning Tools

C. Kremen, A. Cameron *et al.*

Science 320, 222 (2008)

Madagascar: Opportunity Knocks

2002: 1.7 million ha = 2.9%
2003 Durban Vision: 6 million ha = 10%
2006: 3.88 million ha = 6.3%

Study outline

- Gather biodiversity data
 - 2315 species: lemurs, frogs, geckos, ants, butterflies, plants
 - Presences only, limited data, sampling biases
- Model species distributions: Maxent
- New reserve selection software: Zonation
 - 1 km2 resolution for entire country
 - > 700,000 units

Mystrium mysticum, dracula ant

Adansonia grandidieri, Grandidier's baobab

Uroplatus fimbriatus, common leaf-tailed gecko

Indri indri

30

Propithecus diadema, diademed sifaka

Grandidier's baobab

Dracula ant

Indri

Ideal = unconstrained optimized

Starting from PA system: Constrained, optimized Includes temporary areas

through 2006

Multi-taxon

Solutions

TOP 5% 5 to 10% 10 to 15%

Spare slides

Maximum Entropy Principle

The fact that a certain probability distribution maximizes entropy subject to certain constraints representing our incomplete information, is the fundamental property which justifies the use of that distribution for inference; it agrees with everything that is known but carefully avoids assuming anything that is not known (Jaynes, 1990).

Maximizing "gain"

Unregularized gain:

$Gain(q_{\lambda}) = Log likelihood - ln(1/n)$

E.g. if UGain=1.5, then average training sample is exp(1.5) (about 4.5) times more likely than a random background pixel

Maxent maximizes regularized gain:

$$Gain(q \boldsymbol{\lambda}) - \boldsymbol{\Sigma}_{j} \beta_{j} |\lambda_{j}|$$

Maxent algorithms

Goal: maximize the regularized gain Algorithm:

Start with uniform distribution (gain=0) Iteratively update λ to increase the gain

The gain is convex:

- Variety of algorithms: gradient descent, conjugate gradient, Newton, iterative scaling
- Our algorithm: coordinate descent

Interpretation of regularization

Conditional vs unconditional Maxent

One class:

- Distribution over sites: p(x|y=1)
- Maximize entropy: Σp(x|y=1) ln(p(x|y=1))

Multiclass:

- Conditional probability of presence: Pr(y|z)
- Maximize conditional entropy: Σp'(z) p(y|z) ln(p(y|z))

Notation:

- y 0 or 1, species presence
- x a site in our study region
- z a vector of environmental conditions
- p'(z) the empirical probability of z

Effect of regularization: multiplier = 5

Larger confidence Intervals

Higher entropy

More spread-out

Sample selection bias in Ontario birds

Performance guarantees

Solution SOL returned by Maxent is almost as good as the best q_λ

 $\mathsf{RE}(\mathsf{truth} \parallel \mathsf{SOL}) - \mathsf{RE}(\mathsf{truth} \parallel q_{\boldsymbol{\lambda}}) \leq \mathsf{small}$

relative entropy (KL divergence)

Guarantees should depend on

- number of samples **m**
- number of features **n** (or "complexity" of features)
- "complexity" of the best q_{λ}

