

Where do we put money, sex and politics? MARRIA No. of children = Shoring - TX2 Socks on floor 3 x hair in sink+bad plumbing* <difficult in-lawser car trouble _ ironing x petion x2 ~ Smelly feet - flowe y x crabgrass + uner Octome Cottone

Suite of problems

 $HEP = n(1 - P(P_3 N_i) + (N - N_i) P_0$ m = rl = rO m = rl = rO m = rl = rO m = rl = rO

Large scale – designing reserve networks

Gazetting of reserves key conservation action

Historical places in areas of low value

Where should we place reserve to attain certain features?

NEP = nd--PUBNU +(N--WPO n* - Porctut ciny zeto

Knapsack problem – sim. annealing

A network that reaching targets for features for least cost.

South Africa

Obvious I hope

Local scale – managing th. species

McDonald-Madden et al, (2008) Conservation Biology

Objective: maximise the number of extant population

Probability of extinction given investment (state transitions)

Stochastic dynamic programming for state-dep solution

NEP = NU-PUBNU +UN-WPO N+ = PSyctut city zet

What have we assumed?

What don't we know.....

system state

- what's in our reserve?
- is a species extant?

system model

benefit | investment

the list goes on...

Uncertainty in functional form

Decisions in the face of uncertainty

Uncertainty Analysis

- Sensitivity
- Maximin Theory
- Information Gap Theory

From accept' ism to reduction ism

- Information gathering*
- Adaptive management
 - learning system state*
 - learning system model*

Simulation of reserve representation

with more/less info.

Grantham et al. (2008)Conservation Letters

Grantham et al. (2009) Ecology Letters

Designating critical habitat

Martin et al 2009

What should we do?

Do nothing

Survey and learn about the critical habitat

Stop surveying & protect what we think is CH

Optimal strategy given information & species models

Reinforcement Learning.

Why monitor in conservation?

- Information gathering*
- Adaptive management
 - learning system state^{*} → POMDP
 - learning system model*

Acting based on belief.

If decision to patrol is based on state of system

- tigers extant or extinct

Uncertain about state

Save/Survey/Surrender question

80% sure?

Chades et al (2008) PNAS

- Find best decision given our belief in 'real state'

Incorporating surveying - detection

How many frogs can you find?

Relationship between states and observations

Relationship between states and observations

"where i think i was"

"where i think i was"

"where i think i was"

 $p_0 = 0.1$

Acting based on belief in presence

Why monitor in conservation?

- Information gathering*
- Adaptive management
 - learning system state*
 - learning system model* → Belief MDP

Systematic approach to improving management via learning

Understood but mathematically difficult to assess

NEP = NU-PUBNI +(N--WPO N* = Porctu+ clar zet)

Passive versus Active

WARNING: the following slides

show images that may be

disturbing to some people!

how can we actively learn system function?

- a devilishly difficult dilemma

Dramatic decline

Facial tumour disease

Urgent & expensive management

Disease behaviour unclear?

how can we actively learn system function?

- a devilishly difficult dilemma

Objective : Maximise pop growth

Decrease prevalence

Removal of individuals

2 sites for feasible learning

McDonald-Madden et al (2009)

A devilishly difficult dilemma - actions

Many facets unclear

Latency affects removal

Short - remove diseased

Long – remove all

Removal affects reproduction and prevalence

Models and Action

		model 1	model 2	model 3
		Disease will not progress	short latency	long latency
action 1	No treatment	1.20	0.9	0.9
action 2	Cull all diseased	1.05	1.15	0.95
action 3	Cull all adults	1.01	1.01	1.01

Information state for each model – belief that it is true

Outcomes assessed by monitoring

 $\lambda^{s}_{_{ijt}}$

Reassess belief by Bayesian updating

High belief clear

Benefit based on learning and return

What we have to do....

Allocate money b/w areas

Allocate money b/w species

Allocate money b/w actions

Allocate money b/w info and management

NEP = nd-PCBMD +UN-WPO n* = Porctut chr zet

Where to from here – more reality

Where to from here.....

Getting around the curse of dimensionality

- dynamic reserve design
- species allocation on more complex system state

Where to from here.....

More model complexity

- spatial dispersal, multiple species and their interactions

- transitions unclear

NEP = NU-PCPOND +UN-NPO N+ = Pozetu+ chr/zet

Dealing with multiple competing objectives (multi-agent)

- social and biological (fisheries and reef conservation)

NEP = NU-PUBAU) +(N-WPO N* = Porctut chr zet)

Where to from here.....

Even if we can optimize

- How to present
- How to use

- Rules of thumb

NEP = NU-PUBNI +(N--NPO N* - Porctu+ chin zet)

questions...