

Biodiversity Research and Conservation in a Digital World

The Journal of the Society for Conservation Biology Blackwell Publishing, Inc. IXXN 0558-1892 **"Conservation Biology** publishes groundbreaking papers and is instrumental in defining the key issues contributing to the study and preservation of species and habitats."

General Experimental Design

- Focused Surveys
- Broad-scaled Monitoring
- Synthesis and Modeling

Conservation Biology

Global change

Smith, Knapp, Collins. In press.

Increasing Human Population

"Megapolitan"ization

NOVEMBER 2005 BUSINESSON 103

Computation resources and a growing cyberinfrastructure is now an equal and indispensible partner for the advance of scientific knowledge.

Presentation Goals

The computational framework for biodiversity research. The cyberinfrastructure for data curation and access. Define environmental observational data networks. Describe the Data Intensive Science research paradigm. Provide a domain example.

Moore's Law

The number of transistors that can be placed inexpensively on an integrated circuit will increase exponentially, doubling approximately every two years.

Computational power

rit solves	<u>المعالين</u>	- America	Transfertation 10
LA MAN	Alter and	and stops	1944 - 19
North AL	A . mark the shift and the	1. 4	
allaharan Sada h. K.	The A	The second	
-			
Aller and a	hered a convert for radius. Also	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
and dependences	der ber ann - der state for		
		(j). 4	And And And And

F16		 <i>f</i>(x) 	$\Sigma = [$				
	А	В	C D		E	F	
1							1
2							
3	Date	Start time	End time	Pause	Sum	Comment	
4	2007-05-07	9,25	10,25	0	1	Task 1	
5	2007-05-07	10,75	12,50	0	1,75	Task 1	
6	2007-05-07	18,00	19,00	0	1	Task 2	
7	2007-05-08	9,25	10,25	0	1	Task 2	
8	2007-05-08	14,50	15,50	0	1	Task 3	
9	2007-05-08	8,75	9,25	0	0,5	Task 3	
10	2007-05-14	21,75	22,25	0	0,5	Task 3	
11	2007-05-14	22,50	23,00	0	0,5	Task 3	
12	2007-05-15	11,75	12,75	0	1	Task 3	

Multivariate Madness

The coupling of human and natural systems.

- Access
- Data organization
- Archive

The cyberinfrastructure for biodiversity research. Poor data practice

Data loss

- Natural disaster
- Facilities infrastructure failure
- Storage failure
- Server hardware/software failure
- Application software failure
- External dependencies (e.g. PKI failure)
 - Format obsolescence
- Legal encumbrance
- Human error
- Malicious attack by human or automated agents
 - Loss of staffing competencies
 - Loss of institutional commitment
- Loss of financial stability
- Changes in user expectations and requirements

Data deluge

"the flood of increasingly heterogeneous data"

• Data are heterogeneous

- Syntax
 - (format)
- Schema
 - (model)
- Semantics
 - (meaning)

St	udy /	A										
METADATA	Stu Are PIR BEI	dy A: a col. U PA	unita = =	White M st sq. met Picea n Betula (Noun er uben: bapyi	tains s fera						
	date	1	site	species	area	count						
-	10/1/19	93 N	654	PIRU	2	26		l a h a		De		
MIN	10/3/19	94 N	654	PIRU	2	29		Inte	grated	Da	ta	
	10/1/19	93 N	654	BEPA	1	3		study	date	site	species	density
_							1	Α	10/1/1993	N654	Picea Rubens	13.0
								Α	10/3/1994	N654	Picea Rubens	14.5
St	udy I	3					-ι	Α	10/1/1993	N654	Betula papyifera	3.0
-	T Stu	dy B:		Green M	Aoun	teine	1	В	10/31/1993	1	Picea Rubens	13.5
MIN	Are	a sam	pled	: 1 sq. me	eter	Lanto	Į	В	10/31/1993	1	Betula papyifera	1.6
TAD	g pice	ub	=	Picea ru	ibens		7)	В	11/14/1994	1	Picea Rubens	8.4
ME	e bet	pap	=	Betula p	apyn	era		В	11/14/1994	1	Betula papyifera	1.8
DATA	dat 31 Oct 14 Nov	e 1993 1994	si 1	te picru 13.9 8.4	ub 1 5 4	betpap 1.6 1.8	meta 'prom to bea	adata oted' come data	format normalized using	spei fro (pi	cies metadata om study B s now data c crub/betpap	density alculated using

Jones et al. 2007

Supporting the data lifecycle

Building global communities of practice: ... creating long-lived CI enterprises,

- Broad, active community engagement
 - Involvement of library and science educators engaging new generations of students in best practices
 - Existing outreach and education programs
- Transparent, participatory governance
- Adoption/creation of innovative and sustainable business and organizational models

Metcalf's Law

The value of a network grows by the square of the size of the network.

- Sensors
- Sensor Networks
- Observational Data

Global Internet Network Image from the Lumeta Internet Mapping Project

The Earth Observation Network Sensors, sensor networks, and remote sensing gather observations.

Photo courtesy of www.carboafrica.net

Sensors, remote sensing, sensor networks, and observational data

Adapted from CENR-OSTP

Data Intensive Science

Avian Knowledge Network http://avianknowledge.net

Access to data in a standardized format

Tools to explore and visualize data

New analysis techniques to discover patterns of species occurrence

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Marbled Godwit					-							
Ruddy Turnstone		-		-								
Red Knot												- 1
Sanderling								_				
Semipalmated Sandpiper				-							-	
Western Sandpiper												
Red-necked Stint								•				
Least Sandpiper											-	
White-rumped Sandpiper											-	
Baird's Sandpiper										-		
Pectoral Sandpiper			-								-	
Sharp-tailed Sandpiper								-				
Purple Sandpiper						-				-		
Dunlin												=
Stilt Sandpiper					-							

55 Projects

have contributed

~ 50 million Observations

and

~10 million Banding Records

from

750,000+ Locations across North America

with each location linked to

1300 Climate, Land Cover, Anthropogenic, and Geographic Features

Data Synthesis and Access

May 20, 2009

http://www.avianknowledge.net

Exploratory Analysis: Partial Dependency Plots using Bagged Decision Trees

Exploratory Analysis: Modeling Dynamic Patterns of Species Occurrence

Eastern Phoebe

Sullivan et al Biological Conservation 2009

Biodiversity Research and Conservation in a Digital World

Gaining insight into the complexities and processes of natural systems is no longer an exclusive realm of theory and experiment; computation is now an equal and indispensible partner for advances in scientific knowledge, land management, and informed decision making.

Biodiversity Research and Conservation in a Digital World Acknowledgements:

<u>AKN</u>	<u>Comp</u>
Art Munson - CU	Carla
Daniel Fink - CU	Tom D
Wesley Hochachka - CU	Danie
Grant Ballard - PRBO	Ken R
Denis Lepage - BSC	Rebec
Rich Caruana - MS	Weng
Mirek Riedewald - NEU	Megar
Daria Sorokina - CMU	Stefar
Kevin Webb - CU	
Giles Hooker – CU	
CJ Ralph – USFS	
Brian Sullivan – CU	
Will Morris - CU	

Computational Sustainability Carla Gomes - *CU* Tom Dietterich - *OSU* Daniel Sheldon - *CU* Ken Rosenberg – *CU* Rebecca Hutchinson – *OSU* Weng-Keen Wong – *OSU* Megan MacDonald – *CU* Stefan Hames - *CU*

DataONE

Bill Michener - UNM Suzie Allard – UT John Cobb – ORNL Bob Cook – ORNL Patricia Cruse – CDL Mike Frame – USGS Stephanie Hampton – UCSB Viv Hutchison – USGS Matt Jones – UCSB Kathleen Smith - Duke Carol Tenopir – UT Bruce Wilson - Joint ORNL -UT

LEON LEVY FOUNDATION Wolf Creek Charitable Foundation