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Examples

Forest harvest scheduling

Optimal wildlife and fisheries harvest
Stocking, translocations, re-introductions
Regulations of dams on rivers

Impoundment management
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The general problem

Value function Terminal value

max l /

J = Zt]j I(x,a,z,t)+ F[x(tf)]

a(t) e A rzo/ \ \
states andom var.

actions

Subject to:
x(t+D)=x(0)+ f(x,z,a,t) Dynamics

x(t,) = X, Initial conditions




Leads to recursive solution (dynamic
programming):

Present value

/

max
V*[x(¢),t]= {R(x,a,t)+V *|x(t+1),t+1]}

\ aea(t) ]

Optimal decision at t

[Expected]
Future value




Sustainability

* Objective (harvest) is defined over infinite
time

e To maximize objective requires sustaining
population




PDynamic programming

= Guarantees a globally optimal strategy for
control

= Provides closed-loop feedback

= Future resource opportunities “anticipated”
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Sources of uncertainty

= Environmental stochasticity
= Partial controllability
= Partial observability

Structural uncertainty




Active adaptation

Accounts for structural uncertainty in DM
= Model-specific transitions
= Model-specific information weights (model probabilities)

Explicitly treats information weights as another
system state

Current decision making “anticipates” future
reward to objective of learning




Dual Control

Expected value of decision

J

Via(t),x(0),01={R (x,a,0)+ > > p()p,(x,., | x,,a W [a(t +1),x(t + 1), +1]}

/ \fransmon probability
Model (model-specific)
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Some issues

= The Curse of Dimensionality

= High-dimensioned problems difficult or intractable
to solve with DP

E In our community
m [ssues of software accessibility and support
= Relative complexity for the end users
= Still a relatively small user group




ASDP for Optimal
Harvest Management




RADAPTIVE HARVEST
AGEMENT FOR AMERICAN

BEACK DUCKS




Objectives

= Maximum long-term total harvest ... but

= Constraints for achieving population goals

= Allocation (parity) sub-objective
= Canada vs. US




Population constraint
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Decision alternatives

= Harvest regulations
Canada and US set these independently at present
Regulations in US can differ by flyways or portions of
flyways
Can result in up to 6 combinations of spatially-stratified
regulations
a 3 zones in Canada
o 3in US
a 76=117,649 decision combinations

For now assuming regulations are homogenous within
US and Canada

For now assuming fixed harvest rate levels
o Regulations perfectly control harvest rates
s 7 harvest rate levels/ nation = 49 decision combinations




System states /Dynamics

@m State variables
= Spring population size of black ducks (60 discrete levels)
= Spring population size of mallards (a competitor; 60 discrete
levels)

© Dynamics
= Black ducks

8 Density impacts on reproduction (presumed resource limitation)
8 Competition impacts from mallards (absent under alternative H)
8 Survival impacts from harvest (absent under alternative H)
o Generalized stochastic effects (estimated)

= Mallards
o Simply Markovian growth (stationary)
o Generalized stochastic effects (estimated
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Uncertainty

Environmental stochasticity

= Represented by estimated random effect on black duck and
mallard dynamics

= Discrete lognormal distribution (14 levels)
Partial controllability

= Assume for now that specific harvest rates can be achieved

8 Further work needed to characterize stochastic relationship of
regulations to harvest outcomes

Partial observability

= [ncorporated into state-space mode
= Jgnored in optimization
Structural uncertainty

= 4 alternative process models
o Harvest effects X Mallard competition




Casting in ASDP

= State-decision- RV space
= 60> X 72X 14%= 3.5 X 10/

m Stationarity issues

= Most model/ objective scenario combinations did
not converge on stationary solution in 200 iterations

= Reported stationary state-specific strategy (if found)
or iteration 200 strategy

= Simulation of “optimal” strategies
= [nitial conditions 570K black ducks 470L mallards
= 100 simulations of 200 years




Wpieal results




N harvest, simulated trajectory
(2 models)
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Mallards

Optimal strategy
(3‘ -‘ong population and parity

@alnts Additive/compet.)

HS
Additive + Compete
Pop Slope= -10, Pop Goal= 640, Parity Slope= -10, Parity Goal= 0.6

HN
Additive + Compete
Pop Slope= -10, Pop Goal= 640, Parity Slope=-10, Parity Goal= 0.6

3000

2500

2000

1500

Mallards

1000

Il 0.00
Il o.05
Il 0.10
B o.15
0.20

0.25

0 T T T T - 030
0 500 1000 1500 2000 2500 3000

Blackducks

500

1500 2500

Blackducks

2000

Canada



- imulation of Optimal strategy
'-‘;rong population and parity
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Mallards

Optimal strategy
trong population and parity
Neonsitraints, Additive/no compet.)
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Simulation of Optimal strategy
(Strong population and parity
constraints, Additive/no compet.)

Black ducks
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Problem extensions

= Incorporation of partial controllability
= 14 random harvest rate outcomes per harvest decision (4-
5 levels)
= Spatial stratification
= 3 breeding populations
= 6 harvest zones

= State - decision- RV dimensions (independent
populations and harvest zones)
= 60°X56X14° =1.5 X10%
= Haven’t done this!

= Still trying to get buy-in on single population, 2 - harvest
international strategy




ADAPTIVE HARVEST
WIAINAGEMENT FOR WESTERN
MALLARDS




Motivation

= Mallard AHM based (c. 2005) on single stock
(“Midcontinent Population”)

= Pacific Flyway mallards

= Derive much of harvestable population from coastal
and trans-Rockies west

= [However substantial intermixing with midcontinent
population
= Work explored feasibility of western AHM

= 2-stock “virtual model”
o [ndependent stochastic effects and dynamics
o [ndependent harvest regulations




Pioperties of a candidate model

Equal or less complexity than MCP
= Take state space = D

Harvest decisions and population states
independently determined, of similar dimension to

MCP

= Could reduce dimension by linkage

No current model of population interaction
= Assume independent for now

= [nteraction structure potentially reduces dimension

Stochastic variation
= Assumed independent for now
s Covariance structure would reduce dimension




Initial model

B “Cloned” MCP model
m Joint model

= States, decisions, random variables completely
independent

= Dimensionality = D 2 where D= dimensionality of
MCP model




BValuations of performance

© Scenarios
= 4 independent harvest alternatives per population
= Population states 0-20 M , ponds 1-9 M per
population
o Discretization from 0.25to 1 M
a RV dimensions from 1 (deterministic) to 400K
= Platforms IBM & Dell desktops
= [BM 2.40 GHZ 640MB
= DELL 2.8 GHZ 512 MB
= DELL 2.8GHZ 1GB




Table 1. Dimensions of optimization/ simulation problems investigated.

Number of state
combinations

Scenario file

7,144,929

35,721

485,809

7,144,929

4,85,809

35,721

7,144,929

485,809

35,721

7144929

485809

35721

Number of random variables

Number of decision
combinations

Total dimension

114,318,864

571,536

7,772,944

2,857,971,600

194,323,600

14,288,400

7,1449,290,000

4,858,090,000

357,210,000

2,857,971,600

194,323,600

14,288,400




Results

= Attempted to obtain stationary ASDP solutions for
36 scenario-platform combinations

= 12 failed to converge in <24 h, several still running after 1

wk

o Scenarios R4,5,7,8
o All 3 platforms
= Remaining 24 convergence time from <100 s (D2) to >

50,000 s (R1)

= Convergence time function of both state dimension and
RV dimension

8- As RV 2 100 even low-dimension problems were slow to
converge

= If convergence occurred, simulations took only a
modest amount of additional time




No convergence
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Eonclusions/ recommendations

= Currently not practicable to obtain full DP solution
to joint AHM problem involving
= Relatively fine discretization of states and decisions
= Full incorporation of stochastic effects

@ Alternatives
= Brute force computing power (suck it up)
= Simplify
8 Simpler model structure and random variable distributions

o Coarser discretization
o Non-independent decisions (e.g., proportional)

= Deterministic DP followed by stochastic simulation
= Heuristics




UUse of heuristics for
Pptimal harvest
Mahagement




Rationale

Fully optimal closed loop (DP) solutions not
always practicable

= The Curse happens quickly

= Resource managers do not have supercomputers

Fleuristic methods may get us “close enough” to
the optimal solution

Some heuristic methods
= Simulation-optimization
= Genetic algorithms

= Reinforcement learning

= Simulated annealing

['ll discuss the first 3 and mainly the 2"¢ and 3




Simulation-optimization

= Forward stochastic simulation through time

Exponentially increasing complexity of decisions

= |n practice draw candidate decisions at each time and
simulate these

For each simulation evaluate harvest utility

Advantages
= Arbitrary complexity possible
= Can represent states, RVs, and transitions continuously

Downsides
= No process for culling suboptimal decisions as in DP

= Requires very large number of replications even for short
time horizons

= No assurance of global optimality




Genetic Algorithms

= Evolutionary model for optimization

= Alternative decisions represented by

combinations of “alleles”

Decision space explored via mathematical
analogs to recombination and mutation

Achievement of objective measured by a
“fitness function” (e.g., harvest utility)




Genetic algorithms

= Advantages

= Do not require state discretization, dynamics can
follow continuous functions

= Can be arbitrarily complex with little if any
computational penalty

= Can apparently be efficient

= Disadvantage

= No general conclusions about optimality possible




Application to Harvest
Optimization

= Moore (2002) Appendix E

& Johnson et al (1997) formulation of Anderson
(1975) mallard harvest model
= Duck abundance and pond states
= Dynamics under 4 alternative models
= Stochastic rainfall and harvest outcomes
= Harvest utility simple total cumulative harvest




GA trials

= Fixed (15-y) time frame

= 81 levels of harvest rate from 0 - 0.5
B GA

= Hach annual decision =1 “gene” on a 15-gene
“chromosome”

“Chromosome” encoded a particular 15-y harvest
decision schedule

Fixed population followed over fixed number of
generations

“Organisms” pair, exchange genetic material, and

are replaced by offspring

o Bernoulli trials to determine mutation




Steps

. Input initial system state and model
. Initialize population of C organism with 15C
random alleles
. g=0
. Do until g=G
1. Evaluate expected fitness of all
organisms
2. Construct mating pool
3. Crossover genetic material between
parents
4. Mutate alleles of offspring (or not)
5. Create replacement population from
offspring plus elite-selected parents
6. g=g+1
5. Retrieve organism with greatest fitness,
interpret allele A1= optimal state-specific
harvest rate




Lomparison of GA to DP

Solutions mostly consistent for 2 models of
compensatory harvest mortality

= However GA underestimated optimal harvest rate for
high-abundance initial state

Solutions diverged for 2 models of additive
harvest mortality

= For high initial abundance GA underestimated optimal
harvest rate

= For low initial abundance GA overestimated optimal
harvest rate

GA generally outperformed random search
algorithm

GA tended to be risk aversive compared to DP

= Maintained a higher than optimal stock, lower harvest




Conclusions

= GA may perform reasonably well in searching
for optimal harvest strategies in complex
systems

= Still many issues regarding implementation

= Subijectivity of decisions regarding population size,
mutation rate, etc.

= No general statements possible from this example

= Problem: how do we judge relative performance
when DP is infeasible?




Reinforcement learning

Broad definition (Sutton and Barto 1998)

= “Any goal-directed learning problem based upon
interaction with a system or a model thereof”

RL “learns” an optimal policy by receiving
reinforcement from a dynamic environment

Feedback guides exploration of the space of
feasible policies by evaluating actions taken

RL'is unsupervised (e.g., in contrast to neural
networks)

RL combines trial-and-error search with delayed
reward from the environment to achieve its goals




Fonnesbheck (2003)

= Imbedded a MDP in RL

= Constructed an “action-value” function in
terms of a state-action pair Q"(s,a)

= Calculates a value for each available action at state s
assuming that future actions are chosen according to
stated decision policy w

= When value function is maximized for each state
then policy is optimal © = n* and Q is equivalent to
the H-J-B equation
= Average accumulated rewards from n sample
visits to each state




Fonnesbheck (2003)

= Formulation in terms of Bellman’s equation

Q ésléi) =max ) p(s'|s,a){r.(s,a) +/Q"(s",a")}

s'eS
= Estimated optimal policy should converge on n*

& Optimal policies evaluated and improved by
temporal difference learning (TDL)

= Blends elements of DP and Monte Carlos learning to
produce effective and etficient learning algorithm

= Rather than evaluating every action at each step, TDL
chooses 1 action for current state

= Evaluates return by 1-step ahead search (like DP)




RL

= Based on difference between estimate value of
(s,a) before and after the execution of a

Q'(si,a) = Qs a) +alr, +7Q (s, a.,) - Q(s,a)]




RIBasic Steps (“SARSA” method)

Initialize O(s,a) arbitrarily for all s and a
Initialize s arbitrarily
Choose initial action a from policy n

Repeat until convergence
m Execute a, observerr,s’

= Choose action a” at s’ from policy «
= Update

Q'(s,a;)=Q(s ,a )+alr+yQ(s",a") -Q(s;,a,)]

Produces a Markov chain of state-action pairs and
associated rewards

= Parallel chain of policies that converge on optimal policy




Application: Anderson (1975)
Mallard model

= RL using tabular Q-learning algorithm
= Mallard populations 0-17M by 1 M
= Ponds 0-4M by 0.5 M
= Harvest rates 0-0.6 by 0.05

5 Compared to DP results with like discretization




Comparison results

= Under compensatory model

= Estimated policy from RL close to DP only when mallard
abundance low to moderate

= Diverge >8 M

= Similarity related to amount of state-specific experience
by the RL algorithm

@ Under addition model
= RL algorithm generally failed to converge to the optimal
policy
= Comparison of cumulative harvest and abundance
(200 y)
= Similar between DP and RL (overlap of 95% CI)

= Suggest that even though policies differ, resulting
objective outcomes are similar




General conclusions

= Global optimality lacking in RL

= RL Strategies likely perform poorly in extreme
regions of state space (little experience)

& Other criteria (Anderson 1975 desirable
properties) all fulfilled

Adequate consideration of environmental -
uncertainty VAllows for error in observed state

State-specific decision making
Ergodicity
Allows for objective constraints



What nhow?

Some random thoughts




Blilite force vs. clever and close
approximations

m How will we know when we’re close if the “true
globally optimal™ strategy cannot be found

= And if we can find it, why would we settle for “close”
= When is “close” close enough?
= Do we really need optimal strategies?

= Are we trying to get the best possible resource outcome?
= Or are we trying to avoid really bad outcomes?







Not this...




lhe use of information

= Dealing with parametric uncertainty
= Not handled well in current DP paradigm

& Dealing with structural uncertainty

= ASDP can explicitly deal with this via “information
states”

= Adds dimensionality and brings down The Curse

= Dealing with partial observability

= Not handled properly in current ASDP approach
= POMDP ?
= Why the distinction between these 3 types of uncertainty?




A Bayesian i
yasecision
paradigm




UiEilization of information

= Current approach: Optimization and
estimation/ adaptation are modeled separately

& Possible solution: Full Bayesian treatment of
the Markov decision problem




arkov decision problem
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Decision
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Joint distribution

Decision value

Parameters

A/

[V(d), X,0,p,H,

A

Model Data




Implementation?

= Combine Bayesian updating of parameters and
information weights with RL updating

= Produce a joint trace of state-action pairs,
rewards, parameter values, and model
(information weights)




ahlks for listening




