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Background and motivation (brief)Background and motivation (brief)

ASDP and other approaches for optimal ASDP and other approaches for optimal 
harvest management

Use of heuristic methods for harvest 
optimizationp
Some thoughts on the future
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Forest harvest schedulingForest harvest scheduling

Optimal wildlife and fisheries harvestOptimal wildlife and fisheries harvest

Stocking  translocations  re introductionsStocking, translocations, re-introductions

Regulations of dams on riversRegulations of dams on rivers

I d t tImpoundment management



Most NR decision problems involve dynamic, Most NR decision problems involve dynamic, 
stochastic systems with sequential controls
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Guarantees a globally optimal strategy for Guarantees a globally optimal strategy for 
control

Provides closed-loop feedbackProvides closed loop feedback
Future resource opportunities “anticipated”
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Environmental stochasticityEnvironmental stochasticity

Partial controllabilityPartial controllability

Partial observabilityPartial observability

Structural uncertaintyStructural uncertainty



Accounts for structural uncertainty in DMy
Model-specific transitions
Model-specific information weights (model probabilities)

Explicitly treats information weights as another 
system state

Current decision making “anticipates” future 
reward to objective of learning





Most NR decision problems involve dynamic, Most NR decision problems involve dynamic, 
stochastic systems with sequential controls

Attractiveness of  H-J-B (DP)

Adaptation/ Adaptive management

Some downsides



The Curse of DimensionalityThe Curse of Dimensionality
High-dimensioned problems difficult or intractable 
to solve with DP

In our community
Issues of software accessibility and support
Relative complexity for the end users
Still  l ti l  ll  Still a relatively small user group







Maximum long-term total harvest … butMaximum long term total harvest … but

Constraints for achieving population goals

Allocation (parity) sub objectiveAllocation (parity) sub-objective
Canada vs. US
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Harvest regulationsg
Canada and US set these independently at present
Regulations in US can differ by flyways or portions of 
flyways
Can result in up to 6 combinations of spatially-stratified 
regulations

3 zones in Canada
3 i  US3 in US
76 = 117,649  decision combinations

For now assuming regulations are homogenous within 
US and CanadaUS and Canada
For now assuming fixed harvest rate levels 

Regulations perfectly control harvest rates
7 harvest rate levels/ nation = 49 decision combinations7 harvest rate levels/ nation  49 decision combinations



State variables
Spring population size of black ducks (60 discrete levels)
Spring population size of mallards (a competitor; 60 discrete 
levels)

Dynamics
Black ducks

Density impacts on reproduction (presumed resource limitation)y p p (p )
Competition impacts from mallards (absent under alternative H)
Survival impacts from harvest (absent under alternative H)
Generalized stochastic effects (estimated)( )

Mallards
Simply Markovian growth (stationary)
Generalized stochastic effects (estimated(
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Environmental stochasticity
Represented by estimated random effect on black duck and 
mallard dynamics
Discrete lognormal distribution (14 levels)

P ti l t ll bilitPartial controllability
Assume for now that specific harvest rates can be achieved

Further work needed to characterize stochastic relationship of 
regulations to harvest outcomesregulations to harvest outcomes

Partial observability
Incorporated into state-space mode
Ignored in optimization Ignored in optimization 

Structural uncertainty
4 alternative process models

Harvest effects X Mallard competitionp



State-decision- RV spacep
602 X 72 X 142 = 3.5 X 107

Stationarity issues
Most model/ objective scenario combinations did 
not converge on stationary solution in 200 iterationsnot converge on stationary solution in 200 iterations
Reported stationary state-specific strategy (if found) 
or iteration 200 strategy

Simulation of “optimal” strategies 
Initial conditions 570K black ducks 470L mallards
100 i l ti  f 200  100 simulations of 200 years 
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Incorporation of partial controllabilityp p y
14 random harvest rate outcomes per harvest decision (4-
5 levels) 

Spatial stratificationSpatial stratification
3 breeding populations
6 harvest zones

State – decision- RV dimensions (independent 
populations and harvest zones)

606 X 56 X149 =1 5 X 102560 X 5 X14 1.5 X 10
Haven’t done this!
Still trying to get buy-in on single population, 2 – harvest 
international strategyinternational strategy





Mallard AHM based (c. 2005) on single stock ( ) g
(“Midcontinent Population”)
Pacific Flyway mallards 

Derive much of harvestable population from coastal 
and trans-Rockies west
However substantial intermixing with midcontinent However substantial intermixing with midcontinent 
population

Work explored feasibility of western AHM
2-stock “virtual model” 

Independent stochastic effects and dynamics
Independent harvest regulationsIndependent harvest regulations



Equal or less complexity than MCPq p y
Take state space = D2

Harvest decisions  and population states 
independently determined  of similar dimension to independently determined, of similar dimension to 
MCP

Could reduce dimension by linkage
No current model of population interaction

Assume independent for now
Interaction structure potentially reduces dimensionInteraction structure potentially reduces dimension

Stochastic variation
Assumed independent for now
Covariance structure would reduce dimension



“Cloned” MCP modelCloned  MCP model
Joint model

States, decisions, random variables completely States, decisions, random variables completely 
independent
Dimensionality = D 2 where D= dimensionality of 
MCP d lMCP model



ScenariosScenarios
4 independent harvest alternatives per population
Population states 0-20 M , ponds 1-9 M per p p p
population

Discretization from 0.25 to 1 M
RV dimensions from 1 (deterministic) to 400KRV dimensions from 1 (deterministic) to 400K

Platforms IBM & Dell desktops
IBM 2 40 GHZ 640MBIBM 2.40 GHZ 640MB
DELL 2.8 GHZ 512 MB
DELL 2.8GHZ 1GB



Scenario file Number of state 
combinations

Number of random variables Number of decision 
combinations

Total dimension

Table 1.  Dimensions of optimization/ simulation problems investigated. 

D1

7,144,929 1 16 114,318,864
D2

35,721 1 16 571,536
D4

485,809 1 16 7,772,944
R1

7,144,929 25 16 2,857,971,600
R2

4,85,809 25 16 194,323,600
R3

35 721 25 16 14 288 40035,721 25 16 14,288,400
R4

7,144,929 625 16 7,1449,290,000
R5

485,809 625 16 4,858,090,000
R6

35,721 625 16 357,210,000
R7

7144929 25 16 2,857,971,600
R8R8

485809 25 16 194,323,600
R9

35721 25 16 14,288,400



Attempted to obtain stationary ASDP solutions for 
36 scenario-platform combinationsp

12 failed to converge in <24 h, several still running after 1 
wk

Scenarios R4,5,7,8
All 3 platforms

Remaining 24 convergence time from <100 s (D2) to > 
50,000 s (R1)
C  ti  f ti  f b th t t  di i  d Convergence time function of both state dimension and 
RV dimension

As RV 100 even low-dimension problems were slow to 
convergeg

If convergence occurred, simulations took only a 
modest amount of additional time
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Currently not practicable to obtain full DP solution y p
to joint AHM problem involving

Relatively fine discretization of states and decisions
Full incorporation of stochastic effectsFull incorporation of stochastic effects

Alternatives
Brute force computing power (suck it up)
Simplify 

Simpler model structure and random variable distributions
Coarser discretization
Non-independent decisions (e.g., proportional)

Deterministic DP followed by stochastic simulation
HeuristicsHeuristics





Fully optimal closed loop (DP) solutions not y p p ( )
always practicable

The Curse happens quickly
Resource managers do not have supercomputersResource managers do not have supercomputers

Heuristic methods may get us “close enough” to 
the optimal solution
Some heuristic methods

Simulation-optimization
Genetic algorithms Genetic algorithms 
Reinforcement learning
Simulated annealing

I’ll discuss the first 3 and mainly the 2nd and 3rd



Forward stochastic simulation through timeg
Exponentially increasing complexity of decisions

In practice draw candidate decisions at each time and 
simulate these

For each simulation evaluate harvest utility
Advantages

Arbitrary complexity possibleArbitrary complexity possible
Can represent states, RVs, and transitions continuously

Downsides
f ll b l dNo process for culling suboptimal decisions as in DP

Requires very large number of replications even for short 
time horizons
N   f l b l ti litNo assurance of global optimality



Evolutionary model for optimizationEvolutionary model for optimization
Alternative decisions represented by 
combinations of “alleles” 

Decision space explored via mathematical Decision space explored via mathematical 
analogs to recombination and mutation

Achievement of objective measured by a 
“fitness function” (e.g., harvest utility)( g y)



Advantages
Do not require state discretization, dynamics can Do not require state discretization, dynamics can 
follow continuous functions
Can be arbitrarily complex with little if any 

i l lcomputational penalty
Can apparently be efficient 

Disadvantage
No general conclusions about optimality possibleNo general conclusions about optimality possible



Moore (2002) Appendix EMoore (2002) Appendix E

Johnson et al (1997) formulation of Anderson Johnson et al (1997) formulation of Anderson 
(1975) mallard harvest model

Duck abundance and pond statesp
Dynamics under 4 alternative models
Stochastic rainfall and harvest outcomes
Harvest utility simple total cumulative harvest



Fixed (15-y) time frame( y)
81 levels of harvest rate from 0 - 0.5
GA

Each annual decision =1 “gene” on a 15-gene 
“chromosome”
“Chromosome” encoded a particular 15 y harvest Chromosome  encoded a particular 15-y harvest 
decision schedule
Fixed population followed over fixed number of 

tigenerations
“Organisms” pair, exchange genetic material, and 
are replaced by offspringp y p g

Bernoulli trials to determine mutation



1. Input initial system state and model
2. Initialize population of C organism with 15C 

random allelesrandom alleles
3. g=0
4. Do until g=G

1. Evaluate expected fitness of all p
organisms

2. Construct mating pool
3. Crossover genetic material between 

parents
4. Mutate alleles of offspring (or not)
5. Create replacement population from 

offspring plus elite selected parentsoffspring plus elite-selected parents
6. g=g+1

5. Retrieve organism with greatest fitness, 
interpret allele A1= optimal state-specific interpret allele A1  optimal state specific 
harvest rate



Solutions mostly consistent for 2 models of y
compensatory harvest mortality

However GA underestimated optimal harvest rate for 
high-abundance initial state

Solutions diverged for 2 models of additive 
harvest mortality

For high initial abundance GA underestimated optimal g p
harvest rate
For low initial abundance GA overestimated optimal 
harvest rate

GA ll  f d d  h GA generally outperformed random search 
algorithm
GA tended to be risk aversive compared to DPp

Maintained a higher than optimal stock, lower harvest



GA may perform reasonably well in searching GA may perform reasonably well in searching 
for optimal harvest strategies in complex 
systems
Still many issues regarding implementation

Subjectivity of decisions regarding population size, 
mutation rate, etc.
No general statements possible from this example
Problem  how do we judge relati e performance Problem: how do we judge relative performance 
when DP is infeasible?



Broad definition (Sutton and Barto 1998)( )
“Any goal-directed learning problem based upon 
interaction with a system or a model thereof”

RL “learns” an optimal policy by receiving RL learns  an optimal policy by receiving 
reinforcement from a dynamic environment
Feedback guides exploration of the space of 
feasible policies by evaluating actions taken
RL is unsupervised (e.g., in contrast to neural 
networks)networks)
RL combines trial-and-error search with delayed 
reward from the environment to achieve its goals



Imbedded a MDP in RL
Constructed an “action-value” function in 
terms of a state-action pair  Qπ(s,a)

Calculates a value for each available action at state s 
assuming that future actions are chosen according to 
stated decision policy πp y
When value function is maximized for each state             
then policy is optimal π = π* and Q is equivalent to 
the H-J-B equation

Ss∈

the H J B equation
Average accumulated rewards from n sample 
visits to each state



Formulation in terms of Bellman’s equationq
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Estimated optimal policy should converge on π*
Optimal policies evaluated and improved by p p p y
temporal difference learning (TDL)

Blends elements of DP and Monte Carlos learning to 
produce effective and efficient learning algorithmproduce effective and efficient learning algorithm
Rather than evaluating every action at each step, TDL 
chooses 1  action for current state
Evaluates return by 1-step ahead search (like DP)



Based on difference between estimate value of 
( ) b f  d ft  th  ti  f (s,a) before and after the execution of a
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Initialize Q(s,a) arbitrarily for all s and a
Initialize s arbitrarilyInitialize s arbitrarily
Choose initial action a from policy π
Repeat until convergence

Execute a  observer r  s’Execute a , observer r , s
Choose action a’ at s’ from policy π
Update

Advance system state (s,a)= (s’,a’)

)],(),([),(),( ttt asQasQrasQasQ −′′++=′ γα

y ( , ) ( , )
Produces a Markov chain of state-action pairs and 
associated rewards

Parallel chain of policies that converge on optimal policyp g p p y



RL using tabular Q-learning algorithmRL using tabular Q learning algorithm
Mallard populations 0-17M by 1 M
Ponds 0-4M by 0.5 My
Harvest rates 0-0.6 by 0.05

Compared to DP results with like discretization



Under compensatory modelp y
Estimated policy from RL close to DP only when mallard 
abundance low to moderate
Diverge >8 M
Similarity related to amount of state-specific experience 
by the RL algorithm

Under addition model
RL algorithm generally failed to converge to the optimal 
policy

Comparison of cumulative harvest and abundance p
(200 y)

Similar between DP and RL (overlap of 95% CI)
Suggest that even though policies differ, resulting gg g p g
objective outcomes are similar



Global optimality lacking in RLGlobal optimality lacking in RL
RL Strategies likely perform poorly in extreme 
regions of state space (little experience)g p ( p )
Other criteria (Anderson 1975 desirable 
properties) all fulfilledp p )

Adequate consideration of environmental -
uncertainty √Allows for error in observed state

f d kState-specific decision making
Ergodicity
Allows for objective constraintsAllows for objective constraints



Some random thoughts



How will we know when we’re close if the “true 
globally optimal” strategy cannot be found

And if we can find it  why would we settle for “close”And if we can find it, why would we settle for close
When is “close“ close enough?
Do we really need optimal strategies?y p g

Are we trying to get the best possible resource outcome?
Or are we trying to avoid really bad outcomes?







Dealing with parametric uncertaintyg p y
Not handled well in current DP paradigm

Dealing with structural uncertaintyDealing with structural uncertainty
ASDP can explicitly deal with this via “information 
states”
Adds dimensionality and brings down The Curse

Dealing with partial observabilityDealing with partial observability
Not handled properly in current ASDP approach
POMDP ? 
Wh  h  di i i  b  h  3  f i ?Why the distinction between these 3 types of uncertainty?





Current approach: Optimization and Current approach: Optimization and 
estimation/ adaptation are modeled separately

Possible solution: Full Bayesian treatment of 
the Markov decision problemp
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Combine Bayesian updating of parameters and Combine Bayesian updating of parameters and 
information weights with RL updating

Produce a joint trace of state-action pairs, 
rewards, parameter values, and model p
(information weights)




