CHALLENGES IN DYNAMIC OPTIMIZATION IN NATURAL RESOURCE MANAGEMENT

Michael J. Conroy

Topics

Background and motivation (brief)

 ASDP and other approaches for optimal harvest management

Use of heuristic methods for harvest optimization

Some thoughts on the future

Background and motivation

 Most NR decision problems involve dynamic, stochastic systems with sequential controls

Attractiveness H-J-B (DP)

Adaptation / Adaptive management

Some downsides

Background and motivation

 Most NR decision problems involve dynamic, stochastic systems with sequential controls

■ Attractiveness of H-J-B (DP)

Adaptation / Adaptive management

Some downsides

Examples

Forest harvest scheduling

Optimal wildlife and fisheries harvest

Stocking, translocations, re-introductions

Regulations of dams on rivers

Impoundment management

Background and motivation

 Most NR decision problems involve dynamic, stochastic systems with sequential controls

Attractiveness of H-J-B (DP)

Adaptation / Adaptive management

Some downsides

Leads to recursive solution (dynamic programming):

Sustainability

- Objective (harvest) is defined over infinite time
- To maximize objective requires sustaining population

Dynamic programming

 Guarantees a globally optimal strategy for control

Provides closed-loop feedback
Future resource opportunities "anticipated"

Background and motivation

 Most NR decision problems involve dynamic, stochastic systems with sequential controls

■ Attractiveness of H-J-B (DP)

Adaptation / Adaptive management

Some downsides

Sources of uncertainty

Environmental stochasticity

Partial controllability

Partial observability

Structural uncertainty

Active adaptation

Accounts for structural uncertainty in DM

- Model-specific transitions
- Model-specific information weights (model probabilities)

Explicitly treats information weights as another system state

 Current decision making "anticipates" future reward to objective of learning

Background and motivation

 Most NR decision problems involve dynamic, stochastic systems with sequential controls

■ Attractiveness of H-J-B (DP)

Adaptation / Adaptive management

Some downsides

Some issues

The Curse of Dimensionality

 High-dimensioned problems difficult or intractable to solve with DP

In our community

- Issues of software accessibility and support
- Relative complexity for the end users
- Still a relatively small user group

ASDP for Optimal Harvest Management

ADAPTIVE HARVEST MANAGEMENT FOR AMERICAN BLACK DUCKS

Objectives

Maximum long-term total harvest ... but

Constraints for achieving population goals

Allocation (parity) sub-objective
Canada vs. US

Population constraint

Parity constraint

Decision alternatives

Harvest regulations

- Canada and US set these independently at present
- Regulations in US can differ by flyways or portions of flyways
- Can result in up to 6 combinations of spatially-stratified regulations
 - 3 zones in Canada
 - 3 in US
 - $7^6 = 117,649$ decision combinations
- For now assuming regulations are homogenous within US and Canada
- For now assuming fixed harvest rate levels
 - Regulations perfectly control harvest rates
 - 7 harvest rate levels/ nation = 49 decision combinations

System states /Dynamics

State variables

- Spring population size of black ducks (60 discrete levels)
- Spring population size of mallards (a competitor; 60 discrete levels)
- Dynamics
 - Black ducks
 - Density impacts on reproduction (presumed resource limitation)
 - Competition impacts from mallards (absent under alternative H)
 - Survival impacts from harvest (absent under alternative H)
 - Generalized stochastic effects (estimated)
 - Mallards
 - Simply Markovian growth (stationary)
 - Generalized stochastic effects (estimated

Uncertainty

Environmental stochasticity

- Represented by estimated random effect on black duck and mallard dynamics
- Discrete lognormal distribution (14 levels)
- Partial controllability
 - Assume for now that specific harvest rates can be achieved
 - Further work needed to characterize stochastic relationship of regulations to harvest outcomes
- Partial observability
 - Incorporated into state-space mode
 - Ignored in optimization
- Structural uncertainty
 - 4 alternative process models
 - Harvest effects X Mallard competition

Casting in ASDP

State-decision- RV space
60² X 7² X 14² = 3.5 X 10⁷

Stationarity issues

- Most model/ objective scenario combinations did not converge on stationary solution in 200 iterations
- Reported stationary state-specific strategy (if found) or iteration 200 strategy
- Simulation of "optimal" strategies
 - Initial conditions 570K black ducks 470L mallards
 - 100 simulations of 200 years

Typical results

No harvest, simulated trajectory (2 models)

Additive, competition

Additive, no competition

Optimal strategy (Strong population and parity constraints, Additive/compet.)

Simulation of Optimal strategy (Strong population and parity constraints, Additive/compet.)

Optimal strategy (Strong population and parity constraints, Additive/no compet.)

Simulation of Optimal strategy (Strong population and parity constraints, Additive/no compet.)

Problem extensions

Incorporation of partial controllability

- 14 random harvest rate outcomes per harvest decision (4-5 levels)
- Spatial stratification
 - 3 breeding populations
 - 6 harvest zones
- State decision- RV dimensions (independent populations and harvest zones)
 - $60^6 \times 5^6 \times 14^9 = 1.5 \times 10^{25}$
 - Haven't done this!
 - Still trying to get buy-in on single population, 2 harvest international strategy

ADAPTIVE HARVEST MANAGEMENT FOR WESTERN MALLARDS

Motivation

- Mallard AHM based (c. 2005) on single stock ("Midcontinent Population")
- Pacific Flyway mallards
 - Derive much of harvestable population from coastal and trans-Rockies west
 - However substantial intermixing with midcontinent population
- Work explored feasibility of western AHM
 - 2-stock "virtual model"
 - Independent stochastic effects and dynamics
 - Independent harvest regulations

Properties of a candidate model

- Equal or less complexity than MCP
 - Take state space = D²
- Harvest decisions and population states independently determined, of similar dimension to MCP
 - Could reduce dimension by linkage
- No current model of population interaction
 - Assume independent for now
 - Interaction structure potentially reduces dimension
- Stochastic variation
 - Assumed independent for now
 - Covariance structure would reduce dimension
Initial model

- "Cloned" MCP model
- Joint model
 - States, decisions, random variables completely independent
 - Dimensionality = D² where D= dimensionality of MCP model

Evaluations of performance

Scenarios

- 4 independent harvest alternatives per population
- Population states 0-20 M , ponds 1-9 M per population
 - Discretization from 0.25 to 1 M
 - RV dimensions from 1 (deterministic) to 400K
- Platforms IBM & Dell desktops
 - IBM 2.40 GHZ 640MB
 - DELL 2.8 GHZ 512 MB
 - DELL 2.8GHZ 1GB

Table 1. Dimensions of optimization/ simulation problems investigated.				
Scenario file	Number of state combinations	Number of random variables	Number of decision combinations	Total dimension
D1				
	7,144,929	1		16 114,318,864
<u>D2</u>				
DI	35,721	1		16 571,536
<u>D4</u>	195 000	1		16 7 772 0 / /
<u>R1</u>	463,609			10 1,112,944
	7,144,929	25		16 2,857,971,600
<u>R2</u>				
R3	4,85,809	25		16 194,323,600
<u> </u>	35.721	25		16 14.288.400
<u>R4</u>				
DE	7,144,929	625		16 7,1449,290,000
<u>K5</u>	195 900	625		16 4 959 000 000
<u>R6</u>	485,809	023		10 4,858,090,000
	35,721	625		16 357,210,000
<u>R7</u>				
R8	7144929	25		16 2,857,971,600
<u>10</u>	485809	25		16 194,323,600
<u>R9</u>				
	35721	25		16 14,288,400

Results

- Attempted to obtain stationary ASDP solutions for 36 scenario-platform combinations
 - 12 failed to converge in <24 h, several still running after 1 wk
 - Scenarios R4,5,7,8
 - All 3 platforms
 - Remaining 24 convergence time from <100 s (D2) to > 50,000 s (R1)
 - Convergence time function of both state dimension and RV dimension
 - As RV → 100 even low-dimension problems were slow to converge
- If convergence occurred, simulations took only a modest amount of additional time

Conclusions/ recommendations

- Currently not practicable to obtain full DP solution to joint AHM problem involving
 - Relatively fine discretization of states and decisions
 - Full incorporation of stochastic effects
- Alternatives
 - Brute force computing power (suck it up)
 - Simplify
 - Simpler model structure and random variable distributions
 - Coarser discretization
 - Non-independent decisions (e.g., proportional)
 - Deterministic DP followed by stochastic simulation
 - Heuristics

Use of heuristics for optimal harvest management

Rationale

- Fully optimal closed loop (DP) solutions not always practicable
 - The Curse happens quickly
 - Resource managers do not have supercomputers
- Heuristic methods may get us "close enough" to the optimal solution
- Some heuristic methods
 - Simulation-optimization
 - Genetic algorithms
 - Reinforcement learning
 - Simulated annealing
- □ I'll discuss the first 3 and mainly the 2nd and 3rd

Simulation-optimization

- Forward stochastic simulation through time
- Exponentially increasing complexity of decisions
 - In practice draw candidate decisions at each time and simulate these
- For each simulation evaluate harvest utility
- Advantages
 - Arbitrary complexity possible
 - Can represent states, RVs, and transitions continuously
- Downsides
 - No process for culling suboptimal decisions as in DP
 - Requires very large number of replications even for short time horizons
 - No assurance of global optimality

Genetic Algorithms

Evolutionary model for optimization
 Alternative decisions represented by combinations of "alleles"

Decision space explored via mathematical analogs to recombination and mutation

 Achievement of objective measured by a "fitness function" (e.g., harvest utility)

Genetic algorithms

Advantages

- Do not require state discretization, dynamics can follow continuous functions
- Can be arbitrarily complex with little if any computational penalty
- Can apparently be efficient
- Disadvantage
 - No general conclusions about optimality possible

Application to Harvest Optimization

Moore (2002) Appendix E

 Johnson et al (1997) formulation of Anderson (1975) mallard harvest model

- Duck abundance and pond states
- Dynamics under 4 alternative models
- Stochastic rainfall and harvest outcomes
- Harvest utility simple total cumulative harvest

GA trials

- Fixed (15-y) time frame
- 81 levels of harvest rate from 0 0.5

• GA

- Each annual decision =1 "gene" on a 15-gene "chromosome"
- "Chromosome" encoded a particular 15-y harvest decision schedule
- Fixed population followed over fixed number of generations
- "Organisms" pair, exchange genetic material, and are replaced by offspring
 - Bernoulli trials to determine mutation

Steps

- 1. Input initial system state and model
- 2. Initialize population of C organism with 15C random alleles
- 3. g=0
- 4. Do until g=G
 - 1. Evaluate expected fitness of all organisms
 - 2. Construct mating pool
 - 3. Crossover genetic material between parents
 - 4. Mutate alleles of offspring (or not)
 - 5. Create replacement population from offspring plus elite-selected parents

6. g=g+1

5. Retrieve organism with greatest fitness, interpret allele A1= optimal state-specific harvest rate

Comparison of GA to DP

- Solutions mostly consistent for 2 models of compensatory harvest mortality
 - However GA underestimated optimal harvest rate for high-abundance initial state
- Solutions diverged for 2 models of additive harvest mortality
 - For high initial abundance GA underestimated optimal harvest rate
 - For low initial abundance GA overestimated optimal harvest rate
- GA generally outperformed random search algorithm
- GA tended to be risk aversive compared to DP
 - Maintained a higher than optimal stock, lower harvest

Conclusions

- GA may perform reasonably well in searching for optimal harvest strategies in complex systems
- Still many issues regarding implementation
 - Subjectivity of decisions regarding population size, mutation rate, etc.
 - No general statements possible from this example
 - Problem: how do we judge relative performance when DP is infeasible?

Reinforcement learning

- Broad definition (Sutton and Barto 1998)
 - "Any goal-directed learning problem based upon interaction with a system or a model thereof"
- RL "learns" an optimal policy by receiving reinforcement from a dynamic environment
- Feedback guides exploration of the space of feasible policies by evaluating actions taken
- RL is *unsupervised* (e.g., in contrast to neural networks)
- RL combines trial-and-error search with delayed reward from the environment to achieve its goals

Fonnesbeck (2003)

Imbedded a MDP in RL

- Constructed an "action-value" function in terms of a state-action pair Q^π(s,a)
 - Calculates a value for each available action at state s assuming that future actions are chosen according to stated decision policy π
 - When value function is maximized for each state $s \in S$ then policy is optimal $\pi = \pi^*$ and Q is equivalent to the H-J-B equation
- Average accumulated rewards from n sample visits to each state

Fonnesbeck (2003)

Formulation in terms of Bellman's equation

$$Q_{a \in A_{s}}^{*}(s,a) = \max \sum_{s' \in S} p(s' \mid s,a) \{r_{t+1}(s,a) + \gamma Q^{*}(s',a')\}$$

- Estimated optimal policy should converge on π^*
- Optimal policies evaluated and improved by temporal difference learning (TDL)
 - Blends elements of DP and Monte Carlos learning to produce effective and efficient learning algorithm
 - Rather than evaluating every action at each step, TDL chooses 1 action for current state
 - Evaluates return by 1-step ahead search (like DP)

RL

■ Based on difference between estimate value of (*s*,*a*) before and after the execution of *a* $Q'(s_t, a_t) = Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$

RL Basic Steps ("SARSA" method)

- Initialize Q(s,a) arbitrarily for all s and a
- Initialize *s* arbitrarily
- Choose initial action *a* from policy π
- Repeat until convergence
 - Execute *a* , observer *r* , *s*'
 - Choose action *a*' at *s*' from policy π
 - Update

$Q'(s, a_{t}) = Q(s_{t}, a_{t}) + \alpha [r + \gamma Q(s', a') - Q(s_{t}, a_{t})]$

Produces a Markov chain of state-action pairs and associated rewards

Parallel chain of policies that converge on optimal policy

Application: Anderson (1975) Mallard model

- RL using tabular Q-learning algorithm
 - Mallard populations 0-17M by 1 M
 - Ponds 0-4M by 0.5 M
 - Harvest rates 0-0.6 by 0.05
- Compared to DP results with like discretization

Comparison results

Under compensatory model

- Estimated policy from RL close to DP only when mallard abundance low to moderate
- Diverge >8 M
- Similarity related to amount of state-specific experience by the RL algorithm
- Under addition model
 - RL algorithm generally failed to converge to the optimal policy
- Comparison of cumulative harvest and abundance (200 y)
 - Similar between DP and RL (overlap of 95% CI)
 - Suggest that even though policies differ, resulting objective outcomes are similar

General conclusions

- Global optimality lacking in RL
- RL Strategies likely perform poorly in extreme regions of state space (little experience)
- Other criteria (Anderson 1975 desirable properties) all fulfilled
 - Adequate consideration of environmental uncertainty √Allows for error in observed state
 - State-specific decision making
 - Ergodicity
 - Allows for objective constraints

What now?

Some random thoughts

Brute force vs. clever and close approximations

How will we know when we're close if the "true globally optimal" strategy cannot be found

And if we can find it, why would we settle for "close"
When is "close" close enough?

Do we really need optimal strategies?

Are we trying to get the best possible resource outcome?
Or are we trying to avoid really bad outcomes?

Not this...

The use of information

- Dealing with parametric uncertainty
 Not handled well in current DP paradigm
- Dealing with structural uncertainty
 - ASDP can explicitly deal with this via "information states"
 - Adds dimensionality and brings down The Curse
- Dealing with partial observability
 - Not handled properly in current ASDP approach
 - POMDP ?
 - Why the distinction between these 3 types of uncertainty?

A Bayesian information / decision making paradigm

Utilization of information

Current approach: Optimization and estimation/ adaptation are modeled separately

 Possible solution: Full Bayesian treatment of the Markov decision problem

Markov decision problem

Joint distribution

Decision value

Model

Data

Implementation?

 Combine Bayesian updating of parameters and information weights with RL updating

 Produce a joint trace of state-action pairs, rewards, parameter values, and model (information weights)
Thanks for listening

